The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kurganov I.A.

Yevdokimov Moscow State University of Medicine and Dentistry of the Ministry of Health of the Russian Federation

Emelyanov S.I.

Evdokimov Moscow State University of Medicine and Dentistry

Bogdanov D.Yu.

Evdokimov Moscow State University of Medicine and Dentistry

Mamistvalov M.Sh.

Yevdokimov Moscow State University of Medicine and Dentistry

ICG fluorescence technology in mini-invasive endocrine surgery. An overview of the first stage accumulated practical experience

Authors:

Kurganov I.A., Emelyanov S.I., Bogdanov D.Yu., Mamistvalov M.Sh.

More about the authors

Journal: Endoscopic Surgery. 2021;27(1): 49‑56

Read: 3240 times


To cite this article:

Kurganov IA, Emelyanov SI, Bogdanov DYu, Mamistvalov MSh. ICG fluorescence technology in mini-invasive endocrine surgery. An overview of the first stage accumulated practical experience. Endoscopic Surgery. 2021;27(1):49‑56. (In Russ.)
https://doi.org/10.17116/endoskop20212701149

Recommended articles:
Economic issues of medi­cal care for hype­rparathyroidism. Part 1. Primary hype­rparathyroidism. Medi­cal Technologies. Asse­ssment and Choice. 2025;(1):51-61
Extracervical approach for retrosternal goiter. Piro­gov Russian Journal of Surgery. 2025;(5):44-50
Robot-assisted treatment of visceral artery aneurysms. Russian Journal of Cardiology and Cardiovascular Surgery. 2025;(5):547-552
Surgery for heart valve disease and cardiac tumors via mini-thoracotomy: expe­rience of 300 inte­rventions. Russian Journal of Cardiology and Cardiovascular Surgery. 2025;(5):553-559

References:

  1. Vettoretto N, Foglia E, Ferrario L, Gerardi C, Molteni B, Nocco U, Lettieri E, Molfino S, Baiocchi GL, Elmore U, Rosati R, Currò G, Cassinotti E, Boni L, Cirocchi R, Marano A, Petz WL, Arezzo A, Bonino MA, Davini F, Biondi A, Anania G, Agresta F, Silecchia G. Could fluorescence-guided surgery be an efficient and sustainable option? A SICE (Italian Society of Endoscopic Surgery) health technology assessment summary. Surg Endoscopy. 2020;34(7):3270-3284. https://doi.org/10.1007/s00464-020-07542-3
  2. Bonnin-Pascual J, Álvarez-Segurado C, Jiménez-Segovia M, Bianchi A, Bonnin-Pascual F, Molina-Romero FX, González-Argente FX. Contributions of fluorescence to endocrine surgery. Cirugía Española. 2018;96(9):529-536.  https://doi.org/10.1016/j.ciresp.2018.09.005
  3. Abbaci M, De Leeuw F, Breuskin I, Casiraghi O, Lakhdar AB, Ghanem W, Laplace-Builhé C, Hartl D. Parathyroid gland management using optical technologies during thyroidectomy or parathyroidectomy: A systematic review. Oral Oncol. 2018;87:186-196.  https://doi.org/10.1016/j.oraloncology.2018.11.011
  4. Chang YK, Lang BHH. To identify or not to identify parathyroid glands during total thyroidectomy. Gland Surg. 2017;6(1):20-29.  https://doi.org/10.21037/gs.2017.06.13
  5. van den Bos J, van Kooten L, Engelen SME, Lubbers T, Stassen LPS, Bouvy ND. Feasibility of indocyanine green fluorescence imaging for intraoperative identification of parathyroid glands during thyroid surgery. Head Neck. 2019;41(2):340-348.  https://doi.org/10.1002/hed.25451
  6. Ladurner R, Lerchenberger M, Al Arabi N, Gallwas JKS, Stepp H, Hallfeldt KKJ. Parathyroid Autofluorescence-How Does It Affect Parathyroid and Thyroid Surgery? A 5 Year Experience. Molecules. 2019;24(14):E2560. https://doi.org/10.3390/molecules24142560
  7. Ladurner R, Sommerey S, Arabi NA, Hallfeldt KKJ, Stepp H, Gallwas JKS. Intraoperative near-infrared autofluorescence imaging of parathyroid glands. Surg Endoscopy. 2017;31(8):3140-3145. https://doi.org/10.1007/s00464-016-5338-3
  8. Vidal Fortuny J, Sadowski SM, Belfontali V, Guigard S, Poncet A, Ris F, Karenovics W, Triponez F. Randomized clinical trial of intraoperative parathyroid gland angiography with indocyanine green fluorescence predicting parathyroid function after thyroid surgery. Br J Surg. 2018;105(4):350-357.  https://doi.org/10.1002/bjs.10783
  9. Rudin AV, McKenzie TJ, Thompson GB, Farley DR, Lyden ML. Evaluation of Parathyroid Glands with Indocyanine Green Fluorescence Angiography After Thyroidectomy. World J Surg. 2019;43(6):1538-1543. https://doi.org/10.1007/s00268-019-04909-z
  10. Gálvez-Pastor S, Torregrosa NM, Ríos A, Febrero B, González-Costea R, García-López MA, Balsalobre MD, Pastor-Pérez P, Moreno P, Vázquez-Rojas JL, Rodríguez JM. Prediction of hypocalcemia after total thyroidectomy using indocyanine green angiography of parathyroid glands: A simple quantitative scoring system. Am J Surg. 2019;218(5):993-999.  https://doi.org/10.1016/j.amjsurg.2018.12.074
  11. Lyadov VK, Pashaeva DR, Nekludova MV. Use of fluorescent angiography with indocyanine green for prediction of hypocalcemia development after thyroidectomy. Opukholi golovy i shei. 2017;7(4):24-28. (In Russ.). https://doi.org/10.17650/2222-1468-2017-7-4-24-28
  12. Zhang X, Shen YP, Li JG, Chen G. Clinical feasibility of imaging with indocyanine green combined with carbon nanoparticles for sentinel lymph node identification in papillary thyroid microcarcinoma. Medicine (Baltimore). 2019;98(36):e16935. https://doi.org/10.1097/MD.0000000000016935
  13. Zaidi N, Bucak E, Okoh A, Yazici P, Yigitbas H, Berber E. The utility of indocyanine green near infrared fluorescent imaging in the identification of parathyroid glands during surgery for primary hyperparathyroidism. J Surg Oncol. 2016;113(7):771-774.  https://doi.org/10.1002/jso.24240
  14. Alesina PF, Meier B, Hinrichs J, Mohmand W, Walz MK. Enhanced visualization of parathyroid glands during video-assisted neck surgery. Langenbeck’s Arch Surg. 2018;403(3):395-401.  https://doi.org/10.1007/s00423-018-1665-2
  15. Yu HW, Chung JW, Yi JW, Song RY, Lee JH, Kwon H, Kim SJ, Chai YJ, Choi JY, Lee KE. Intraoperative localization of the parathyroid glands with indocyanine green and Firefly(R) technology during BABA robotic thyroidectomy. Surg Endoscopy. 2017;31(7):3020-3027. https://doi.org/10.1007/s00464-016-5330-y
  16. Muraveika L, Kose E, Berber E. Near-infrared fluorescence in robotic thyroidectomy. Gland Surg. 2020;9(2):147-152.  https://doi.org/10.21037/gs.2019.12.15
  17. Kim Y, Kim SW, Lee KD, Ahn YC. Video-assisted parathyroid gland mapping with autofocusing. J Biophoton. 2019;12(12):e201900017. https://doi.org/10.1002/jbio.201900017
  18. Zhang X, Li JG, Zhang SZ, Chen G. Comparison of indocyanine green and carbon nanoparticles in endoscopic techniques for central lymph nodes dissection in patients with papillary thyroid cancer. Surg Endoscopy. 2020; Jan 6. [Epub ahead of print]. https://doi.org/10.1007/s00464-019-07326-4
  19. Kim WW, Choi JA, Lee J, Jung JH, Park HY. Fluorescence imaging-guided robotic thyroidectomy and central lymph node dissection. J Surg Res. 2018;231:297-303.  https://doi.org/10.1016/j.jss.2018.05.071
  20. Mohsin K, Alzahrani H, Bu Ali D, Kang SW, Kandil E. Robotic transaxillary parathyroidectomy. Gland Surg. 2017;6(4):410-411.  https://doi.org/10.21037/gs.2017.04.09
  21. Sound S, Okoh A, Yigitbas H, Yazici P, Berber E. Utility of Indocyanine Green Fluorescence Imaging for Intraoperative Localization in Reoperative Parathyroid Surgery. Surg Innovation. 2019;26(6):774-779.  https://doi.org/10.1177/1553350615613450
  22. Wagner OJ, Louie BE, Vallières E, Aye RW, Farivar AS. Near-infrared fluorescence imaging can help identify the contralateral phrenic nerve during robotic thymectomy. Ann Thor Surg. 2012;94(2):622-625.  https://doi.org/10.1016/j.athoracsur.2012.04.119
  23. Dip FD, Roy M, Perrins S, Ganga RR, Lo Menzo E, Szomstein S, Rosenthal R. Technical description and feasibility of laparoscopic adrenal contouring using fluorescence imaging. Surg Endoscopy. 2015;29(3):569-574.  https://doi.org/10.1007/s00464-014-3699-z
  24. Seeliger B, Walz MK, Alesina PF, Agnus V, Pop R, Barberio M, Saadi A, Worreth M, Marescaux J, Diana M. Fluorescence-enabled assessment of adrenal gland localization and perfusion in posterior retroperitoneoscopic adrenal surgery in a preclinical model. Surg Endoscopy. 2020;34(3):1401-1411. https://doi.org/10.1007/s00464-019-06997-3
  25. van Manen L, Handgraaf HJM, Diana M, Dijkstra J, Ishizawa T, Vahrmeijer AL, Mieog JSD. A practical guide for the use of indocyanine green and methylene blue in fluorescence-guided abdominal surgery. J Surg Oncol. 2018;118(2):283-300.  https://doi.org/10.1002/jso.25105
  26. Moore EC, Berber E. Fluorescence techniques in adrenal surgery. Gland Surg. 2019;8(1):22-27.  https://doi.org/10.21037/gs.2019.03.01
  27. DeLong JC, Chakedis JM, Hosseini A, Kelly KJ, Horgan S, Bouvet M. Indocyanine green (ICG) fluorescence-guided laparoscopic adrenalectomy. J Surg Oncol. 2015;112(6):650-653.  https://doi.org/10.1002/jso.24057
  28. Arora E, Bhandarwar A, Wagh A, Gandhi S, Patel C, Gupta S, Talwar G, Agarwal J, Rathore J, Chatnalkar S. Role of indo-cyanine green (ICG) fluorescence in laparoscopic adrenalectomy: a retrospective review of 55 Cases. Surg Endosc. 2018;32(11):4649-4657. https://doi.org/10.1007/s00464-018-6309-7
  29. Cacciamani GE, Shakir A, Tafuri A, Gill K, Han J, Ahmadi N, Hueber PA, Gallucci M, Simone G, Campi R, Vignolini G, Huang WC, Taylor J, Becher E, Van Leeuwen FWB, Van Der Poel HG, Velet LP, Hemal AK, Breda A, Autorino R, Sotelo R, Aron M, Desai MM, De Castro Abreu AL. Best practices in near-infrared fluorescence imaging with indocyanine green (NIRF/ICG)-guided robotic urologic surgery: a systematic review-based expert consensus. World J Urol. 2020;38(4):883-896.  https://doi.org/10.1007/s00345-019-02870-z
  30. Sound S, Okoh AK, Bucak E, Yigitbas H, Dural C, Berber E. Intraoperative tumor localization and tissue distinction during robotic adrenalectomy using indocyanine green fluorescence imaging: a feasibility study. Surg Endoscopy. 2016;30(2):657-662.  https://doi.org/10.1007/s00464-015-4256-0
  31. Colvin J, Zaidi N, Berber E. The utility of indocyanine green fluorescence imaging during robotic adrenalectomy. J Surg Oncol. 2016;114(2):153-156.  https://doi.org/10.1002/jso.24296
  32. Kahramangil B, Kose E, Berber E. Characterization of fluorescence patterns exhibited by different adrenal tumors: Determining the indications for indocyanine green use in adrenalectomy. Surgery. 2018;164(5):972-977.  https://doi.org/10.1016/j.surg.2018.06.012
  33. Tuncel A, Balci M, Aykanat C, Aslan Y, Berker D, Guzel O. Laparoscopic partial adrenalectomy using near-infrared imaging: the initial experience. Minimally Invasive Therapy & Allied Technologies. 2019; Dec 11:1-7. [Epub ahead of print]. https://doi.org/10.1080/13645706.2019.1691016
  34. Lerchenberger M, Gündogar U, Al Arabi N, Gallwas JKS, Stepp H, Hallfeldt KKJ, Ladurner R. Indocyanine green fluorescence imaging during partial adrenalectomy. Surg Endoscopy. 2020;34(5):2050-2055. https://doi.org/10.1007/s00464-019-06985-7
  35. Balescu I, Arnautu O, Grasu M, Badiu C, Tomulescu V, Copăescu C. Partial Adrenalectomy — Arguments for the Minimally Invasive Surgical Approach. Chirurgia (Bucuresti). 2019;114(5):611-621.  https://doi.org/10.21614/chirurgia.114.5.611
  36. Manny TB, Pompeo AS, Hemal AK. Robotic partial adrenalectomy using indocyanine green dye with near-infrared imaging: the initial clinical experience. Urology. 2013;82(3):738-742.  https://doi.org/10.1016/j.urology.2013.03.074

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.