The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kosyreva A.M.

Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery;
Peoples’ Friendship University of Russia named after Patrice Lumumba

Miroshnichenko E.A.

Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery;
Peoples’ Friendship University of Russia named after Patrice Lumumba

Makarova O.V.

Avtsyn Research Institute of Human Morphology of Petrovsky National Research Centre of Surgery

The role of neutrophils in the mechanisms of sepsis

Authors:

Kosyreva A.M., Miroshnichenko E.A., Makarova O.V.

More about the authors

Read: 2537 times


To cite this article:

Kosyreva AM, Miroshnichenko EA, Makarova OV. The role of neutrophils in the mechanisms of sepsis. Russian Journal of Archive of Pathology. 2024;86(6):82‑91. (In Russ.)
https://doi.org/10.17116/patol20248606182

Recommended articles:
Neurometabolic therapy with Cere­brolysin in patients with sepsis-associated ence­phalopathy. Russian Journal of Anesthesiology and Reanimatology. 2024;(6):46-54
Nutritional support for sepsis: is there a single concept?. Russian Journal of Anesthesiology and Reanimatology. 2024;(6):70-78
Septic complications after abdo­minal deli­very (literature review). Russian Journal of Human Reproduction. 2024;(6):108-117
Prognostic model of a patient with sepsis readiness to early mobi­lization with assi­stance. Problems of Balneology, Physiotherapy and Exercise Therapy. 2025;(2):26-26
Biomarkers of acute cere­bral damage in complex diagnosis of sepsis-associated ence­phalopathy. Russian Journal of Anesthesiology and Reanimatology. 2025;(3):6-13
Resting energy expe­nditure asse­ssment needs in patients with pancreatogenic sepsis. Russian Journal of Anesthesiology and Reanimatology. 2025;(3):26-33
Endo­thelial factors for prediction of mortality in blood cancer patients with sepsis. Russian Journal of Anesthesiology and Reanimatology. 2025;(5):74-80

References:

  1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. 2016;315(8):801-810.  https://doi.org/10.1001/jama.2016.0287
  2. Fleischmann-Struzek C, Mellhammar L, Rose N, Cassini A, Rudd KE, Schlattmann P, Allegranzi B, Reinhart K. Incidence and mortality of hospital- and ICU-treated sepsis: results from an updated and expanded systematic review and meta-analysis. Intensive Care Med. 2020;46(8):1552-1562. https://doi.org/10.1007/s00134-020-06151-x
  3. van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity. 2021;54(11):2450-2464. https://doi.org/10.1016/j.immuni.2021.10.012
  4. Torres LK, Pickkers P, van der Poll T. Sepsis-induced immunosuppression. Annu Rev Physiol. 2022;84:157-181.  https://doi.org/10.1146/annurev-physiol-061121-040214
  5. Manz MG, Boettcher S. Emergency granulopoiesis. Nat Rev Immunol. 2014;14(5):302-314.  https://doi.org/10.1038/nri3660
  6. Nauseef WM, Borregaard N. Neutrophils at work. Nat Immunol. 2014;15(7):602-611.  https://doi.org/10.1038/ni.2921
  7. Herter J, Zarbock A. Integrin regulation during leukocyte recruitment. J Immunol. 2013;190(9):4451-4457. https://doi.org/10.4049/jimmunol.1203179
  8. Lilliehöök I, Tvedten HW, Bröjer J, Edner A, Nostell K. Time-related changes in equine neutrophils after experimental endotoxemia: myeloperoxidase staining, size, and numbers. Vet Clin Pathol. 2016;45(1):66-72.  https://doi.org/10.1111/vcp.12334
  9. Vinther AM, Heegaard PM, Skovgaard K, Buhl R, Andreassen SM, Andersen PH. Characterization and differentiation of equine experimental local and early systemic inflammation by expression responses of inflammation-related genes in peripheral blood leukocytes. BMC Vet Res. 2016;12:83.  https://doi.org/10.1186/s12917-016-0706-8
  10. Hou L, Voit RA, Shibamura-Fujiogi M, Koutsogiannaki S, Li Y, Chen Y, Luo H, Sankaran VG, Yuki K. CD11c regulates neutrophil maturation. Blood Adv. 2023;7(7):1312-1325. https://doi.org/10.1182/bloodadvances.2022007719
  11. Hofman P. Molecular regulation of neutrophil apoptosis and potential targets for therapeutic strategy against the inflammatory process. Curr Drug Targets Inflamm Allergy. 2004;3(1):1-9.  https://doi.org/10.2174/1568010043483935
  12. Colotta F, Re F, Polentarutti N, Sozzani S, Mantovani A. Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood. 1992;80(8):2012-2020. https://doi.org/10.1182/blood.V80.8.2012.2012
  13. Hinshaw LB. Sepsis/septic shock: participation of the microcirculation: an abbreviated review. Crit Care Med. 1996;24(6):1072-1078. https://doi.org/10.1097/00003246-199606000-00031
  14. Saito H, Lai J, Rogers R, Doerschuk CM. Mechanical properties of rat bone marrow and circulating neutrophils and their responses to inflammatory mediators. Blood. 2002;99(6):2207-2213. https://doi.org/10.1182/blood.v99.6.2207
  15. Skoutelis AT, Kaleridis V, Athanassiou GM, Kokkinis KI, Missirlis YF, Bassaris HP. Neutrophil deformability in patients with sepsis, septic shock, and adult respiratory distress syndrome. Crit Care Med. 2000;28(7):2355-2359. https://doi.org/10.1097/00003246-200007000-00029
  16. Silvestre-Roig C, Hidalgo A, Soehnlein O. Neutrophil heterogeneity: implications for homeostasis and pathogenesis. Blood. 2016;127(18):2173-2181. https://doi.org/10.1182/blood-2016-01-688887
  17. Woodfin A, Beyrau M, Voisin MB, Ma B, Whiteford JR, Hordijk PL, Hogg N, Nourshargh S. ICAM-1-expressing neutrophils exhibit enhanced effector functions in murine models of endotoxemia. Blood. 2016;127(7):898-907.  https://doi.org/10.1182/blood-2015-08-664995
  18. Nigro KG, O’Riordan M, Molloy EJ, Walsh MC, Sandhaus LM. Performance of an automated immature granulocyte count as a predictor of neonatal sepsis. Am J Clin Pathol. 2005:123(4):618-624.  https://doi.org/10.1309/73H7-K7UB-W816-PBJJ
  19. Nierhaus A, Klatte S, Linssen J, Eismann NM, Wichmann D, Hedke J, Braune SA, Kluge S. Revisiting the white blood cell count: immature granulocytes count as a diagnostic marker to discriminate between SIRS and sepsis — a prospective, observational study. BMC Immunol. 2013;14:8.  https://doi.org/10.1186/1471-2172-14-8
  20. Meghraoui-Kheddar A, Chousterman BG, Guillou N, Barone SM, Granjeaud S, Vallet H, Corneau A, Guessous K, de Roquetaillade C, Boissonnas A, et al. Two new neutrophil subsets define a discriminating sepsis signature. Am J Respir Crit Care Med. 2022;205(1):46-59.  https://doi.org/10.1164/rccm.202104-1027OC
  21. Daix T, Guerin E, Tavernier E, Mercier E, Gissot V, Hérault O, Mira JP, Dumas F, Chapuis N, Guitton C, et al. Multicentric standardized flow cytometry routine assessment of patients with sepsis to predict clinical worsening. Chest. 2018;154(3):617-627.  https://doi.org/10.1016/j.chest.2018.03.058
  22. Qi X, Yu Y, Sun R, Huang J, Liu L, Yang Y, Rui T, Sun B. Identification and characterization of neutrophil heterogeneity in sepsis. Crit Care. 2021;25(1):50.  https://doi.org/10.1186/s13054-021-03481-0
  23. Sun L, Fang K, Yang Z. Combination therapy with probiotics and anti-PD-L1 antibody synergistically ameliorates sepsis in mouse model. Heliyon. 2024;10(11):e31747. https://doi.org/10.1016/j.heliyon.2024.e31747
  24. Wang JF, Wang YP, Xie J, Zhao ZZ, Gupta S, Guo Y, Jia SH, Parodo J, Marshall JC, Deng XM. Upregulated PD-L1 delays human neutrophil apoptosis and promotes lung injury in an experimental mouse model of sepsis. Blood. 2021;138(9):806-810.  https://doi.org/10.1182/blood.2020009417
  25. Hong Y, Chen L, Sun J, Xing L, Yang Y, Jin X, Cai H, Dong L, Zhou L, Zhang Z. Single-cell transcriptome profiling reveals heterogeneous neutrophils with prognostic values in sepsis. iScience. 2022;25(11):105301. https://doi.org/10.1016/j.isci.2022.105301
  26. Kangelaris KN, Clemens R, Fang X, Jauregui A, Liu T, Vessel K, Deiss T, Sinha P, Leligdowicz A, Liu KD, et al. A neutrophil subset defined by intracellular olfactomedin 4 is associated with mortality in sepsis. Am J Physiol Lung Cell Mol Physiol. 2021;320(5):L892-L902. https://doi.org/10.1152/ajplung.00090.2020
  27. Elsbach P, Weiss J. Oxygen-dependent and oxygen-independent mechanisms of microbicidal activity of neutrophils. Immunol Lett. 1985;11(3-4):159-163.  https://doi.org/10.1016/0165-2478(85)90163-4
  28. Drab E, Sugihara K. Cooperative function of LL-37 and HNP1 protects mammalian cell membranes from lysis. Biophys J. 2020: 119(12):2440-2450. https://doi.org/10.1016/j.bpj.2020.10.031
  29. Chiswick EL, Mella JR, Bernardo J, Remick DG. Acute-phase deaths from murine polymicrobial sepsis are characterized by innate immune suppression rather than exhaustion. J Immunol. 2015;195(8):3793-3802. https://doi.org/10.4049/jimmunol.1500874
  30. Conway Morris A, Kefala K, Wilkinson TS, Dhaliwal K, Farrell L, Walsh T, Mackenzie SJ, Reid H, Davidson DJ, Haslett C, et al. C5a mediates peripheral blood neutrophil dysfunction in critically ill patients. Am J Respir Crit Care Med. 2009;180(1):19-28.  https://doi.org/10.1164/rccm.200812-1928OC
  31. Miller L, Singbartl K, Chroneos ZC, Ruiz-Velasco V, Lang CH, Bonavia A. Resistin directly inhibits bacterial killing in neutrophils. Intensive Care Med Exp. 2019;7(1):30.  https://doi.org/10.1186/s40635-019-0257-y
  32. Kellner M, Noonepalle S, Lu Q, Srivastava A, Zemskov E, Black SM. ROS signaling in the pathogenesis of Acute Lung Injury (ALI) and Acute Respiratory Distress Syndrome (ARDS). Adv Exp Med Biol. 2017;967:105-137.  https://doi.org/10.1007/978-3-319-63245-2_8
  33. Le-Barillec K, Si-Tahar M, Balloy V, Chignard M. Proteolysis of monocyte CD14 by human leukocyte elastase inhibits lipopolysaccharide-mediated cell activation. J Clin Invest. 1999;103(7):1039-1046. https://doi.org/10.1172/JCI5779
  34. Roghanian A, Drost EM, MacNee W, Howie SE, Sallenave JM. Inflammatory lung secretions inhibit dendritic cell maturation and function via neutrophil elastase. Am J Respir Crit Care Med. 2006;174(11):1189-1198. https://doi.org/10.1164/rccm.200605-632OC
  35. Pillay J, Kamp VM, van Hoffen E, Visser T, Tak T, Lammers JW, Ulfman LH, Leenen LP, Pickkers P, Koenderman L. A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1. J Clin Invest. 2012;122(1):327-336.  https://doi.org/10.1172/JCI57990
  36. Darcy CJ, Minigo G, Piera KA, Davis JS, McNeil YR, Chen Y, Volkheimer AD, Weinberg JB, Anstey NM, Woodberry T. Neutrophils with myeloid derived suppressor function deplete arginine and constrain T cell function in septic shock patients. Crit Care. 2014;18(4):R163. https://doi.org/10.1186/cc14003
  37. Langereis JD, Pickkers P, de Kleijn S, Gerretsen J, de Jonge MI, Kox M. Spleen-derived IFN-γ induces generation of PD-L1+-suppressive neutrophils during endotoxemia. J Leukoc Biol. 2017; 102(6):1401-1409. https://doi.org/10.1189/jlb.3A0217-051RR
  38. Martín-Fernández M, Tamayo-Velasco Á, Aller R, Gonzalo-Benito H, Martínez-Paz P, Tamayo E. Endothelial dysfunction and neutrophil degranulation as central events in sepsis physiopathology. Int J Mol Sci. 2021;22(12):6272. https://doi.org/10.3390/ijms22126272
  39. Yau JW, Teoh H, Verma S. Endothelial cell control of thrombosis. BMC Cardiovasc Disord. 2015;15:130.  https://doi.org/10.1186/s12872-015-0124-z
  40. Ye X, Ding J, Zhou X, Chen G, Liu SF. Divergent roles of endothelial NF-kappaB in multiple organ injury and bacterial clearance in mouse models of sepsis. J Exp Med. 2008;205(6):1303-1315. https://doi.org/10.1084/jem.20071393
  41. Broekhuizen LN, Mooij HL, Kastelein JJ, Stroes ES, Vink H, Nieuwdorp M. Endothelial glycocalyx as potential diagnostic and therapeutic target in cardiovascular disease. Curr Opin Lipidol. 2009;20(1):57-62.  https://doi.org/10.1097/MOL.0b013e328321b587
  42. Suzuki K, Okada H, Takemura G, Takada C, Kuroda A, Yano H, Zaikokuji R, Morishita K, Tomita H, Oda K, et al. Neutrophil elastase damages the pulmonary endothelial glycocalyx in lipopolysaccharide-induced experimental endotoxemia. Am J Pathol. 2019;189(8):1526-1535. https://doi.org/10.1016/j.ajpath.2019.05.002
  43. Stanski NL, Wong HR. Prognostic and predictive enrichment in sepsis. Nat Rev Nephrol. 2020;16(1):20-31.  https://doi.org/10.1038/s41581-019-0199-3
  44. Davenport EE, Burnham KL, Radhakrishnan J, Humburg P, Hutton P, Mills TC, Rautanen A, Gordon AC, Garrard C, Hill AV, et al. Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study. Lancet Respir Med. 2016;4(4):259-271.  https://doi.org/10.1016/S2213-2600(16)00046-1
  45. Scicluna BP, van Vught LA, Zwinderman AH, Wiewel MA, Davenport EE, Burnham KL, Nürnberg P, Schultz MJ, Horn J, Cremer OL, et al.; MARS consortium. Classification of patients with sepsis according to blood genomic endotype: a prospective cohort study. Lancet Respir Med. 2017;5(10):816-826.  https://doi.org/10.1016/S2213-2600(17)30294-1
  46. Maslove DM, Tang BM, McLean AS. Identification of sepsis subtypes in critically ill adults using gene expression profiling. Crit Care. 2012;16(5):R183. https://doi.org/10.1186/cc11667
  47. Baghela A, Pena OM, Lee AH, Baquir B, Falsafi R, An A, Farmer SW, Hurlburt A, Mondragon-Cardona A, Rivera JD, et al. Predicting sepsis severity at first clinical presentation: the role of endotypes and mechanistic signatures. EBioMedicine. 2022;75:103776. https://doi.org/10.1016/j.ebiom.2021.103776
  48. Loh W, Vermeren S. Anti-inflammatory neutrophil functions in the resolution of inflammation and tissue repair. Cells. 2022; 11(24):4076. https://doi.org/10.3390/cells11244076
  49. Shelhamer MC, Rowan MP, Cancio LC, Aden JK, Rhie RY, Merrill GA, Wolf SE, Renz EM, Chung KK. Elevations in inflammatory cytokines are associated with poor outcomes in mechanically ventilated burn patients. J Trauma Acute Care Surg. 2015;79(3):431-436.  https://doi.org/10.1097/TA.0000000000000786
  50. Coban YK, Aral M. Serum IL-18 is increased at early postburn period in moderately burned patients. Mediators Inflamm. 2006; 2006(2):16492. https://doi.org/10.1155/MI/2006/16492
  51. Finnerty CC, Herndon DN, Chinkes DL, Jeschke MG. Serum cytokine differences in severely burned children with and without sepsis. Shock. 2007;27(1):4-9.  https://doi.org/10.1097/01.shk.0000235138.20775.36
  52. Hur J, Yang HT, Chun W, Kim JH, Shin SH, Kang HJ, Kim HS. Inflammatory cytokines and their prognostic ability in cases of major burn injury. Ann Lab Med. 2015;35(1):105-110.  https://doi.org/10.3343/alm.2015.35.1.105
  53. Mulet M, Osuna-Gómez R, Zamora C, Artesero I, Arús M, Vera-Artazcoz P, Cordón A, Vilalta N, San-José P, Abril A, et al. Dysregulated neutrophil extracellular traps formation in sepsis. Immunology. 2023;170(3):374-387.  https://doi.org/10.1111/imm.13676
  54. Pilsczek FH, Salina D, Poon KK, Fahey C, Yipp BG, Sibley CD, Robbins SM, Green FH, Surette MG, Sugai M, et al. A novel mechanism of rapid nuclear neutrophil extracellular trap formation in response to Staphylococcus aureus. J Immunol. 2010; 185(12):7413-7425. https://doi.org/10.4049/jimmunol.1000675
  55. Cahilog Z, Zhao H, Wu L, Alam A, Eguchi S, Weng H, Ma D. The role of neutrophil NETosis in organ injury: novel inflammatory cell death mechanisms. Inflammation. 2020;43(6):2021-2032. https://doi.org/10.1007/s10753-020-01294-x
  56. Sollberger G, Tilley DO, Zychlinsky A. Neutrophil extracellular traps: the biology of chromatin externalization. Dev Cell. 2018; 44(5):542-553.  https://doi.org/10.1016/j.devcel.2018.01.019
  57. Lefrançais E, Mallavia B, Zhuo H, Calfee CS, Looney MR. Maladaptive role of neutrophil extracellular traps in pathogen-induced lung injury. JCI Insight. 2018;3(3):e98178. https://doi.org/10.1172/jci.insight.98178
  58. Sikora JP, Karawani J, Sobczak J. Neutrophils and the systemic inflammatory response syndrome (SIRS). Int J Mol Sci. 2023; 24(17):13469. https://doi.org/10.3390/ijms241713469
  59. Yan HP, Li M, Lu XL, Zhu YM, Ou-Yang WX, Xiao ZH, Qiu J, Li SJ. Use of plasma mitochondrial DNA levels for determining disease severity and prognosis in pediatric sepsis: a case control study. BMC Pediatr. 2018;18(1):267.  https://doi.org/10.1186/s12887-018-1239-z
  60. Liew PX, Kubes P. The neutrophil’s role during health and disease. Physiol Rev. 2019;99(2):1223-1248. https://doi.org/10.1152/physrev.00012.2018
  61. Trulson I, Stahl J, Margraf S, Scholz M, Hoecherl E, Wolf K, Durner J, Klawonn F, Holdenrieder S. Cell-free DNA in plasma and serum indicates disease severity and prognosis in blunt trauma patients. Diagnostics (Basel). 2023;13(6):1150. https://doi.org/10.3390/diagnostics13061150
  62. Sha Y, Zmijewski J, Xu Z, Abraham E. HMGB1 develops enhanced proinflammatory activity by binding to cytokines. J Immunol. 2008;180(4):2531-2537. https://doi.org/10.4049/jimmunol.180.4.2531
  63. Karlsson S, Pettilä V, Tenhunen J, Laru-Sompa R, Hynninen M, Ruokonen E. HMGB1 as a predictor of organ dysfunction and outcome in patients with severe sepsis. Intensive Care Med. 2008;34(6):1046-1053. https://doi.org/10.1007/s00134-008-1032-9
  64. Zhang J, She D, Feng D, Jia Y, Xie L. Dynamic changes of serum soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) reflect sepsis severity and can predict prognosis: a prospective study. BMC Infect Dis. 2011;11:53.  https://doi.org/10.1186/1471-2334-11-53
  65. Stoppelkamp S, Veseli K, Stang K, Schlensak C, Wendel HP, Walker T. Identification of predictive early biomarkers for sterile-SIRS after cardiovascular surgery. PLoS One. 2015;10(8):e0135527. https://doi.org/10.1371/journal.pone.0135527
  66. Huang Y, Zhang N, Xie C, You Y, Guo L, Ye F, Xie X, Wang J. Lipocalin-2 in neutrophils induces ferroptosis in septic cardiac dysfunction via increasing labile iron pool of cardiomyocytes. Front Cardiovasc Med. 2022;9:922534. https://doi.org/10.3389/fcvm.2022.922534
  67. Jaberi SA, Cohen A, D’Souza C, Abdulrazzaq YM, Ojha S, Bastaki S, Adeghate EA. Lipocalin-2: structure, function, distribution and role in metabolic disorders. Biomed Pharmacother. 2021;142:112002. https://doi.org/10.1016/j.biopha.2021.112002
  68. Chang W, Zhu S, Pan C, Xie JF, Liu SQ, Qiu HB, Yang Y. Predictive utilities of neutrophil gelatinase-associated lipocalin (NGAL) in severe sepsis. Clin Chim Acta. 2018;481:200-206.  https://doi.org/10.1016/j.cca.2018.03.020
  69. Wang H, Zhang M, Mao H, Cheng Z, Zhang Q, Jiang C, Sun C, Sun L. Serum neutrophil gelatinase-associated lipocalin and proinflammatory cytokines in pigs with septic versus non-septic acute kidney injury. Int Urol Nephrol. 2015;47(2):413-420.  https://doi.org/10.1007/s11255-014-0878-8
  70. Paul A, Newbigging NS, Lenin A, Gowri M, Varghese JS, Nell AJ, Abhilash KPP, Binu AJ, Chandiraseharan VK, Iyyadurai R, et al. Role of neutrophil Gelatinase-associated Lipocalin (NGAL) and other clinical parameters as predictors of bacterial sepsis in patients presenting to the emergency department with fever. Indian J Crit Care Med. 2023;27(3):176-182.  https://doi.org/10.5005/jp-journals-10071-24419
  71. Abou El-Khier NT, Zaki ME, Alkasaby NM. Study of MicroRNA-122 as a diagnostic biomarker of sepsis. Egypt J Immunol. 2019;26(2): 105-116. 
  72. Guo H, Tang L, Xu J, Lin C, Ling X, Lu C, Liu Z. MicroRNA-495 serves as a diagnostic biomarker in patients with sepsis and regulates sepsis-induced inflammation and cardiac dysfunction. Eur J Med Res. 2019;24(1):37.  https://doi.org/10.1186/s40001-019-0396-3
  73. Sun B, Luan C, Guo L, Zhang B, Liu Y. Low expression of microRNA-328 can predict sepsis and alleviate sepsis-induced cardiac dysfunction and inflammatory response. Braz J Med Biol Res. 2020;53(8):e9501. https://doi.org/10.1590/1414-431X20209501
  74. Zhang B, Yu L, Sheng Y. Clinical value and role of microRNA-29c-3p in sepsis-induced inflammation and cardiac dysfunction. Eur J Med Res. 2021;26(1):90.  https://doi.org/10.1186/s40001-021-00566-y
  75. Han Y, Li Y, Jiang Y. The prognostic value of plasma microRNA-155 and microRNA-146a level in severe sepsis and sepsis-induced acute lung injury patients. Clin Lab. 2016;62(12):2355-2360. https://doi.org/10.7754/Clin.Lab.2016.160511
  76. Ma C, Liu K, Wang F, Fei X, Niu C, Li T, Liu L. Neutrophil membrane-engineered Panax ginseng root-derived exosomes loaded miRNA 182-5p targets NOX4/Drp-1/NLRP3 signal pathway to alleviate acute lung injury in sepsis: experimental studies. Int J Surg. 2024;110(1):72-86.  https://doi.org/10.1097/JS9.0000000000000789
  77. Jiao Y, Zhang T, Zhang C, Ji H, Tong X, Xia R, Wang W, Ma Z, Shi X. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit Care. 2021;25(1):356.  https://doi.org/10.1186/s13054-021-03775-3
  78. Chen B, Han J, Chen S, Xie R, Yang J, Zhou T, Zhang Q, Xia R. MicroLet-7b regulates neutrophil function and dampens neutrophilic inflammation by suppressing the Canonical TLR4/NF-κB pathway. Front Immunol. 2021;12:653344. https://doi.org/10.3389/fimmu.2021.653344

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.