The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Volchkova E.V.

Saint Petersburg State Pediatric Medical University

Kuzubova N.A.

Pavlov First Saint Petersburg State Medical University

Aleksandrovich Yu.S.

Children’s Scientific Clinical Center for Infectious Diseases

Lebedeva E.S.

Pavlov First Saint Petersburg State Medical University

HIF-1a in immune pathogenesis of SARS-CoV-2-pneumonia

Authors:

Volchkova E.V., Kuzubova N.A., Aleksandrovich Yu.S., Lebedeva E.S.

More about the authors

Read: 2307 times


To cite this article:

Volchkova EV, Kuzubova NA, Aleksandrovich YuS, Lebedeva ES. HIF-1a in immune pathogenesis of SARS-CoV-2-pneumonia. Russian Journal of Anesthesiology and Reanimatology. 2022;(5):71‑78. (In Russ.)
https://doi.org/10.17116/anaesthesiology202205171

Recommended articles:
The level of hypo­xia-induced factor-1a and asso­ciated mole­cules in preeclampsia. Russian Bulletin of Obstetrician-Gynecologist. 2025;(1):5-10
Central nervous system invo­lvement in systemic lupus erythematosus. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(2):124-129

References:

  1. Goh KJ, Choong MC, Cheong EH, Kalimuddin S, Duu Wen S, Phua GC, Chan KS, Haja Mohideen S. Rapid Progression to Acute Respiratory Distress Syndrome: Review of Current Understanding of Critical Illness from Coronavirus Disease 2019 (COVID-19) Infection. Annals of the Academy of Medicine, Singapore. 2020;49(3):108-118. 
  2. Siddiqi HK, Mehra MR. COVID-19 illness in native and immuno-suppressed states: A clinical-therapeutic staging proposal. The Journal of Heart and Lung Transplantation. 2020;39(5):405-407.  https://doi.org/10.1016/j.healun.2020.03.012
  3. Wilkerson RG, Adler JD, Shah NG, Brown R. Silent hypoxia: a harbinger of clinical deterioration in patients with COVID-19. The American Journal of Emergency Medicine. 2020;38(10):2243.e5-2243.e6.  https://doi.org/10.1016/j.alem.2020.05.044
  4. AbdelMassih A, Yacoub E, Husseiny RJ, Kamel A, Hozaien R, El Shershaby M, Rajab M, Yacoub S, Eid MA, Elahmady M, Gadalla M, Mokhtar S, Hassan AA, Abou-Zeid AS, Hussein M, Aboushadi N, Emad N, Zahra N, Hassan A, Hussein E, Ibrahim N, El Nahhas N, Elahmady T, Khallaf M, Mustafa H, Anis N, Albehairy M, Hanna F, Moris L, Ye J. Hypoxia-inducible factor (HIF): The link between obesity and COVID-19. Obesity Medicine. 2021;22:100317. https://doi.org/10.1016/j.obmed.2020.100317
  5. Darif D, Hammi I, Kihel A, El Idrissi Saik I, Guessous F, Akarid K. The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong? Microbial Pathogenesis. 2021;153:104799. https://doi.org/10.1016/j.micpath.2021.104799
  6. Yousefi B, Valizadeh S, Ghaffari H, Vahedi A, Karbalaei M, Eslami M. A global treatments for coronaviruses including COVID-19. Journal of Cellular Physiology. 2020;235(12):9133-9142. https://doi.org/10.1002/jcp.29785
  7. Jahani M, Dokaneheifard S, Mansouri K. Hypoxia: A key feature of COVID-19 launching activation of HIF-1 and cytokine storm. Journal of Inflammation. 2020;17:33.  https://doi.org/10.1186/s12950-020-00263-3
  8. Serebrovska ZO, Chong EY, Serebrovska TV, Tumanovska LV, Xi L. Hypoxia, HIF-1alpha, and COVID-19: from pathogenic factors to potential therapeutic targets. Acta Pharmacologica Sinica. 2020;41(12):1539-1546. https://doi.org/10.1038/s41401-020-00554-8
  9. Wing PAC, Keeley TP, Zhuang X, Lee JY, Prange-Barczynska M, Tsukuda S, Morgan SB, Harding AC, Argles ILA, Kurlekar S, Noerenberg M, Thompson CP, Huang KA, Balfe P, Watashi K, Castello A, Hinks TSC, James W, Ratcliffe PJ, Davis I, Hodson EJ, Bishop T, McKeating JA. Hypoxic and pharmacological activation of HIF inhibits SARS-CoV-2 infection of lung epithelial cells. Cell Reports. 2021;35(3):109020. https://doi.org/10.1016/j.celrep.2021.109020
  10. Gan ES, Ooi EE. Oxygen: viral friend or foe? Virology Journal. 2020;17(1):115.  https://doi.org/10.1186/s12985-020-01374-2
  11. Colgan SP, Campbell EL, Kominsky DJ. Hypoxia and mucosal inflammation. Annual Review of Pathology. 2016;11:77-100.  https://doi.org/10.1146/annurev-pathol-012615-044231
  12. Cummins EP, Keogh CE, Crean D, Taylor CT. The role of HIF in immunity and inflammation. Molecular Aspects of Medicine. 2016;47-48:24-34.  https://doi.org/10.1016/j.mam.2015.12.004
  13. Watts ER, Walmsley SR. Inflammation and hypoxia: HIF and PHD isoform selectivity. Trends in Molecular Medicine. 2019;25(1):33-46.  https://doi.org/10.1016/j.molmed.2018.10.006
  14. Donina ZA. Causes of hypoxemia in COVID-19. Journal of Evolutionary Biochemistry and Physiology. 2022;58(1):73-80.  https://doi.org/10.1134/S0022093022010070
  15. Manganelli F, Vargas M, Iovino A, Iacovazzo C, Santoro L, Servillo G. Brainstem involvement and respiratory failure in COVID-19. Neurological Sciences. 2020;41(7):1663-1665. https://doi.org/10.1007/s10072-020-04487-2
  16. Eriksson O, Hultström M, Persson B, Lipcsey M, Ekdahl KN, Nilsson B, Frithiof R. Mannose-binding lectin is associated with thrombosis and coagulopathy in critically ill COVID-19 patients. Thrombosis and Haemostasis. 2020;120(12):1720-1724. https://doi.org/10.1055/s-0040-1715835
  17. Mason RJ. Thoughts on the alveolar phase of COVID-19. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2020;319(1):115-120.  https://doi.org/10.1152/ajplung.00126.2020
  18. Cavezzi A, Troiani E, Corrao S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. A narrative review. Clinics and Practice. 2020;10(2):1271. https://doi.org/10.4081/cp.2020.1271
  19. Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399-408.  https://doi.org/10.1016/j.cell.2012.01.021
  20. Titova ON, Kuzubova NA, Lebedeva ES, Surkova EA, Preobrazhenskaya TN, Dvorakovskaya IV. Anti-inflammatory and regenerative effect of hypoxic signaling suppression on a model of chronic obstructive pulmonary disease. Pul’monologiya. 2018;28(2):169-176. (In Russ.). https://doi.org/10.18093/0869-0189-2018-28-2-169-176
  21. Gajnitdinova VV, Avdeev SN. Remodeling of large peripheral arteries in patients with chronic obstructive pulmonary disease and its combination with arterial hypertension. Pul’monologiya. 2015;25(1):50-57. (In Russ.). https://doi.org/10.18093/0869-0189-2015-25-1-50-57
  22. Mineev VN, Lalaeva TM, Kuz’mina AA. Possible role of apelinergic signaling in the development of pathology of the bronchopulmonary system. Pul’monologiya. 2013;(2):101-104. (In Russ.). https://doi.org/10.18093/0869-0189-2013-0-2-101-104
  23. Avdeev SN, Batyn SZ, Merzhoeva ZM, Chuchalin AG. High doses of N-acetylcysteine in acute respiratory distress syndrome. Pul’monologiya. 2010;3:31-38. (In Russ.). https://doi.org/10.18093/0869-0189-2010-3-31-38
  24. Dobrynina LA, Gnedovskaya EV, Shabalina AA, Sergeeva AN, Kravchenko MA, Nikolaeva NS. Biomarkers and mechanisms of early vascular damage. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2018;118(12-2):23-32. (In Russ.). https://doi.org/10.17116/jnevro201811812223
  25. Zonneveld M, Keulers T, Rouschop K. Extracellular vesicles as transmitters of hypoxia tolerance in solid cancers. Cancers. 2019;11(2):154.  https://doi.org/10.3390/cancers11020154
  26. Li MY, Li L, Zhang Y, Wang XS. Expression of the SARSCoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infectious Diseases of Poverty. 2020;9(1):45.  https://doi.org/10.1186/s40249-020-00662-x
  27. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature Communications. 2020;11(1):1620. https://doi.org/10.1038/s41467-020-15562-9
  28. Yan T, Xiao R, Lin G. Angiotensin-converting enzyme 2 in severe acute respiratory syndrome coronavirus and SARS-CoV-2: A double-edged sword? FASEB Journal. 2020;34(5):6017-6026. https://doi.org/10.1096/fj.202000782
  29. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine. 2020;46(4):586-590.  https://doi.org/10.1007/s00134-020-05985-9
  30. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271-280.e8.  https://doi.org/10.1016/j.cell.2020.02.052
  31. Wan Y, Shang J, Graham R, Baric RS, Li F. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus. Journal of Virology. 2020;94(7):e00127-20.  https://doi.org/10.1128/JVI.00127-20
  32. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, Li WW, Li VW, Mentzer SJ, Jonigk D. Pulmonary vascular endothelialitis, hrombosis, and angiogenesis in Covid-19. The New England Journal of Medicine. 2020;383(2):120-128.  https://doi.org/10.1056/NEJMoa2015432
  33. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nature Reviews. Immunology. 2020;20(6):363-374.  https://doi.org/10.1038/s41577-020-0311-8
  34. Zhang R, Su H, Ma X, Xu X, Liang L, Ma G, Shi L. MiRNA let-7b promotes the development of hypoxic pulmonary hypertension by targeting ACE2. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2019;316(3):547-57.  https://doi.org/10.1152/ajplung.00387.2018
  35. Lian G, Li X, Zhang L, Zhang Y, Sun L, Zhang X, Liu H, Pang Y, Kong W, Zhang T, Wang X, Jiang C. Macrophage metabolic reprogramming aggravates aortic dissection through the HIF1α-ADAM17 pathway. EBioMedicine. 2019;49:291-304.  https://doi.org/10.1016/j.ebiom.2019.09.041
  36. Lisi S, D’Amore M, Sisto M. ADAM17 at the interface between inflammation and autoimmunity. Immunology Letters. 2014;162(1 Pt A):159-169.  https://doi.org/10.1016/j.imlet.2014.08.008
  37. Zunke F, Rose-John S. The shedding protease ADAM17: physiology and pathophysiology. Biochimica et Biophysica Acta. Molecular Cell Research. 2017;1864(11 Pt B):2059-2070. https://doi.org/10.1016/j.bbamcr.2017.07.001
  38. Yang J, Petitjean SJL, Koehler M, Zhang Q, Dumitru AC, Chen W, Derclaye S, Vincent SP, Soumillion P, Alsteens D. Molecular interaction and inhibition of SARS-CoV-2 binding to the ACE2 receptor. Nature Communications. 2020;11(1):4541. https://doi.org/10.1038/s41467-020-18319-6
  39. Arias-Reyes C, Zubieta-DeUrioste N, Poma-Machicao L, Aliaga-Raduan F, Carvajal-Rodriguez F, Dutschmann M, Schneider-Gasser EM, Zubieta-Calleja G, Soliz J. Does the pathogenesis of SARS-CoV-2 virus decrease at high-altitude? Respiratory Physiology and Neurobiology. 2020;277:103443. https://doi.org/10.1016/j.resp.2020.103443
  40. Pun M, Turner R, Strapazzon G, Brugger H, Swenson ER. Lower incidence of COVID-19 at high altitude: facts and confounders. High Altitude Medicine and Biology. 2020;21(3):217-222.  https://doi.org/10.1089/ham.2020.0114
  41. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, O’Meara MJ, Rezelj VV, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, Kaake RM, Richards AL, Tutuncuoglu B, Foussard H, Batra J, Haas K, Modak M, Kim M, Haas P, Polacco BJ, Braberg H, Fabius JM, Eckhardt M, Soucheray M, Bennett MJ, Cakir M, McGregor MJ, Li Q, Meyer B, Roesch F, Vallet T, Mac Kain A, Miorin L, Moreno E, Naing ZZC, Zhou Y, Peng S, Shi Y, Zhang Z, Shen W, Kirby IT, Melnyk JE, Chorba JS, Lou K, Dai SA, Barrio-Hernandez I, Memon D, Hernandez-Armenta C, Lyu J, Mathy CJP, Perica T, Pilla KB, Ganesan SJ, Saltzberg DJ, Rakesh R, Liu X, Rosenthal SB, Calviello L, Venkataramanan S, Liboy-Lugo J, Lin Y, Huang XP, Liu Y, Wankowicz SA, Bohn M, Safari M, Ugur FS, Koh C, Savar NS, Tran QD, Shengjuler D, Fletcher SJ, O’Neal MC, Cai Y, Chang JCJ, Broadhurst DJ, Klippsten S, Sharp PP, Wenzell NA, Kuzuoglu-Ozturk D, Wang HY, Trenker R, Young JM, Cavero DA, Hiatt J, Roth TL, Rathore U, Subramanian A, Noack J, Hubert M, Stroud RM, Frankel AD, Rosenberg OS, Verba KA, Agard DA, Ott M, Emerman M, Jura N, von Zastrow M, Verdin E, Ashworth A, Schwartz O, d’Enfert C, Mukherjee S, Jacobson M, Malik HS, Fujimori DG, Ideker T, Craik CS, Floor SN, Fraser JS, Gross JD, Sali A, Roth BL, Ruggero D, Taunton J, Kortemme T, Beltrao P, Vignuzzi M, García-Sastre A, Shokat KM, Shoichet BK, Krogan NJ. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459-468.  https://doi.org/10.1038/s41586-020-2286-9
  42. Huang R, Huestis M, Gan ES, Ooi EE, Ohh M. Hypoxia and viral infectious diseases. JCI Insight. 2021;6(7):e147190. https://doi.org/10.1172/jci.insight.147190
  43. Budinger GRS, Misharin AV, Ridge KM, Singer BD, Wunderink RG. Distinctive features of severe SARS-CoV-2 pneumonia. The Journal of Clinical Investigation. 2021;131(14):e149412. https://doi.org/10.1172/JCI149412
  44. Codo AC, Davanzo GG, Monteiro LB, de Souza GF, Muraro SP, Virgilio-da-Silva JV, Prodonoff JS, Carregari VC, de Biagi Junior CAO, Crunfli F, Jimenez Restrepo JL, Vendramini PH, Reis-de-Oliveira G, Bispo Dos Santos K, Toledo-Teixeira DA, Parise PL, Martini MC, Marques RE, Carmo HR, Borin A, Coimbra LD, Boldrini VO, Brunetti NS, Vieira AS, Mansour E, Ulaf RG, Bernardes AF, Nunes TA, Ribeiro LC, Palma AC, Agrela MV, Moretti ML, Sposito AC, Pereira FB, Velloso LA, Vinolo MAR, Damasio A, Proença-Módena JL, Carvalho RF, Mori MA, Martins-de-Souza D, Nakaya HI, Farias AS, Moraes-Vieira PM. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metabolism. 2020;32(3):498-499.  https://doi.org/10.1016/j.cmet.2020.07.015
  45. Tian M, Liu W, Li X, Zhao P, Shereen MA, Zhu C, Huang S, Liu S, Yu X, Yue M, Pan P, Wang W, Li Y, Chen X, Wu K, Luo Z, Zhang Q, Wu J. HIF-1α promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19. Signal Transduction and Targeted Therapy. 2021;6(1):308.  https://doi.org/10.1038/s41392-021-00726-w
  46. Taylor CT, Doherty G, Fallon PG, Cummins EP. Hypoxia-dependent regulation of inflammatory pathways in immune cells. The Journal of Clinical Investigation. 2016;126(10):3716-3724. https://doi.org/10.1172/JCI84433
  47. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F, Liu L, Amit I, Zhang S, Zhang Z. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nature Medicine. 2020;26(6):842-844.  https://doi.org/10.1038/s41591-020-0901-9
  48. Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR, Wu JE, Alanio C, Kuri-Cervantes L, Pampena MB, D’Andrea K, Manne S, Chen Z, Huang YJ, Reilly JP, Weisman AR, Ittner CAG, Kuthuru O, Dougherty J, Nzingha K, Han N, Kim J, Pattekar A, Goodwin EC, Anderson EM, Weirick ME, Gouma S, Arevalo CP, Bolton MJ, Chen F, Lacey SF, Ramage H, Cherry S, Hensley SE, Apostolidis SA, Huang AC, Vella LA; UPenn COVID Processing Unit, Betts MR, Meyer NJ, Wherry EJ. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science. 2020;369(6508):eabc8511. https://doi.org/10.1126/science.abc8511
  49. Hsu TS, Lin YL, Wang YA, Mo ST, Chi PY, Lai AC, Pan HY, Chang YJ, Lai MZ. HIF-2α is indispensable for regulatory T cell function. Nature Communications. 2020;11(1):5005. https://doi.org/10.1038/s41467-020-18731-y
  50. Wu D, Yang XO. TH17 responses in cytokine storm of COVID-19: an emerging target of JAK2 inhibitor Fedratinib. Journal of Microbiology, Immunology, and Infection. 2020;53(3):368-370.  https://doi.org/10.1016/j.jmii.2020.03.005
  51. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the ‘Cytokine Storm’ in COVID-19. The Journal of Infection. 2020;80(6):607-613.  https://doi.org/10.1016/j.jinf.2020.03.037
  52. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10233):497-506.  https://doi.org/10.1016/S0140-6736(20)30183-5
  53. Hogwood J, Pitchford S, Mulloy B, Page C, Gray E. Heparin and non-anticoagulant heparin attenuate histone-induced inflammatory responses in whole blood. PLoS One. 2020;15(5):e0233644. https://doi.org/10.1371/journal.pone.0233644
  54. Walmsley SR, Print C, Farahi N, Peyssonnaux C, Johnson RS, Cramer T, Sobolewski A, Condliffe AM, Cowburn AS, Johnson N, Chilvers ER. Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. The Journal of Experimental Medicine. 2005;201(1):105-115.  https://doi.org/10.1084/jem.20040624
  55. Teuwen LA, Geldhof V, Pasut A, Carmeliet P. COVID-19: the vasculature unleashed. Nature Reviews. Immunology. 2020;20(7):389-391.  https://doi.org/10.1038/s41577-020-0343-0
  56. Polke M, Seiler F, Lepper PM, Kamyschnikow A, Langer F, Monz D, Herr C, Bals R, Beisswenger C. Hypoxia and the hypoxia-regulated transcription factor HIF-1alpha suppress the host defence of airway epithelial cells. Innate Immunity. 2017;23(4):373-380.  https://doi.org/10.1177/1753425917698032
  57. Rajasundaram S. Adenosine A2A receptor signaling in the immunopathogenesis of experimental autoimmune encephalomyelitis. Frontiers in Immunology. 2018;9:402.  https://doi.org/10.3389/fimmu.2018.00402
  58. Mishra GP, Mulani J. Corticosteroids for COVID-19: the search for an optimum duration of therapy. The Lancet. Respiratory Medicine. 2021;9(1):e8.  https://doi.org/10.1016/S2213-2600(20)30530-0
  59. Finney LJ, Glanville N, Farne H, Aniscenko J, Fenwick P, Kemp SV, Trujillo-Torralbo MB, Loo SL, Calderazzo MA, Wedzicha JA, Mallia P, Bartlett NW, Johnston SL, Singanayagam A. Inhaled corticosteroids downregulate the SARS-CoV-2 receptor ACE2 in COPD through suppression of type I interferon. The Journal of Allergy and Clinical Immunology. 2021;147(2):510-519.e5.  https://doi.org/10.1016/j.jaci.2020.09.034
  60. Wagner AE, Huck G, Stiehl DP, Jelkmann W, Hellwig-Bürgel T. Dexamethasone impairs hypoxia-inducible factor-1 function. Biochemical and Biophysical Research Communications. 2008;372(2):336-340.  https://doi.org/10.1016/j.bbrc.2008.05.061
  61. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, Sterne JAC, Murthy S, Diaz JV, Slutsky AS, Villar J, Angus DC, Annane D, Azevedo LCP, Berwanger O, Cavalcanti AB, Dequin PF, Du B, Emberson J, Fisher D, Giraudeau B, Gordon AC, Granholm A, Green C, Haynes R, Heming N, Higgins JPT, Horby P, Jüni P, Landray MJ, Le Gouge A, Leclerc M, Lim WS, Machado FR, McArthur C, Meziani F, Møller MH, Perner A, Petersen MW, Savovic J, Tomazini B, Veiga VC, Webb S, Marshall JC. Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA. 2020;324(13):1330-1341. https://doi.org/10.1001/jama.2020.17023
  62. Zhang M, Li W, Yu L, Wu S. The suppressive effect of resveratrol on HIF-1α and VEGF expression after warm ischemia and reperfusion in rat liver. PloS One. 2014;9(10):e109589. https://doi.org/10.1371/journal.pone.0109589
  63. Zalpoor H, Bakhtiyari M, Liaghat M, Nabi-Afjadi M, Ganjalikhani-Hakemi M. Quercetin potential effects against SARS-CoV-2 infection and COVID-19-associated cancer progression by inhibiting mTOR and hypoxia-inducible factor-1α (HIF-1α). Phytotherapy Research: PTR. 2022;36(7):2679-2682. https://doi.org/10.1002/ptr.7440
  64. Di Pierro F, Derosa G, Maffioli P, Bertuccioli A, Togni S, Riva A, Allegrini P, Khan A, Khan S, Khan BA, Altaf N, Zahid M, Ujjan ID, Nigar R, Khushk MI, Phulpoto M, Lail A, Devrajani BR, Ahmed S. Possible therapeutic effects of adjuvant quercetin supplementation against early-stage COVID-19 infection: A prospective, randomized, controlled, and open-label study. International Journal of General Medicine. 2021;14:2359-2366. https://doi.org/10.2147/IJGM.S318720
  65. Mathew T, Sarada SKS. Intonation of Nrf2 and Hif1-α pathway by curcumin prophylaxis: A potential strategy to augment survival signaling under hypoxia. Respiratory Physiology and Neurobiology. 2018;258:12-24.  https://doi.org/10.1016/j.resp.2018.09.008
  66. Moasefi N, Fouladi M, Norooznezhad AH, Yarani R, Rahmani A, Mansouri K. How could perfluorocarbon affect cytokine storm and angiogenesis in coronavirus disease 2019 (COVID-19): role of hypoxia-inducible factor 1α. Inflammation Research. 2021;70(7):749-752.  https://doi.org/10.1007/s00011-021-01469-8
  67. Bahrampour Juybari K, Pourhanifeh MH, Hosseinzadeh A, Hemati K, Mehrzadi S. Melatonin potentials against viral infections including COVID-19: Current evidence and new findings. Virus Research. 2020;287:198108. https://doi.org/10.1016/j.viruses.2020.198108
  68. Reiter RJ, Sharma R, Simko F, Dominguez-Rodriguez A, Tesarik J, Neel RL, Slominski AT, Kleszczynski K, Martin-Gimenez VM, Manucha W, Cardinali DP. Melatonin: highlighting its use as a potential treatment for SARS-CoV-2 infection. Cellular and Molecular Life Sciences: CMLS. 2022;79(3):143.  https://doi.org/10.1007/s00018-021-04102-3
  69. Martorina WJ, Tavares A. Possible role of exogenous melatonin in preventing more serious COVID-19 infection in patients with type 2 diabetes mellitus. Revista da Associacao Medica Brasileira. 2021;67(suppl 1):18-21.  https://doi.org/10.1590/1806-9282.67.Suppl1.20200968
  70. Hosseini A, Esmaeili Gouvarchin Ghaleh H, Aghamollaei H, Fasihi Ramandi M, Alishiri G, Shahriary A, Hassanpour K, Tat M, Farnoosh G. Evaluation of Th1 and Th2 mediated cellular and humoral immunity in patients with COVID-19 following the use of melatonin as an adjunctive treatment. European Journal of Pharmacology. 2021;904:174193. https://doi.org/10.1016/j.ejphar.2021.174193
  71. He M, Zhou C, Lu Y, Mao L, Xi Y, Mei X, Wang X, Zhang L, Yu Z, Zhou Z. Melatonin antagonizes nickel-induced aerobic glycolysis by blocking ROS-mediated HIF-1alpha/miR210/ISCU axis activation. Oxidative Medicine and Cellular Longevity. 2020;2020:5406284. https://doi.org/10.1155/2020/5406284
  72. Hosseinzadeh MH, Goodarzi A, Malekan M, Ebrahimzadeh MA. Melatonin increased hypoxia-inducible factor (HIF) by inhibiting prolylhydroxylase: A hypothesis for treating anaemia, ischemia, and COVID-19. Clinical and Experimental Pharmacology and Physiology. 2022;49(6):696-698.  https://doi.org/10.1111/1440-1681.13639

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.