INTRODUCTION

Disorder of sex development is a group of congenital defects involving atypical development of chromosomal, gonadal, or anatomical sex [1]. Development of male sex is primarily determined by expression of the SRY gene in Y-chromosome, facilitating the development of undifferentiated gonad to form testicles [2]. Along with the SRY gene, a number of genes and signaling pathways involved in sex determination and associated with a wide phenotypic spectrum of the disorders of sex development (DSD) have been identified [3]. Recent studies have found mutations in the gene of mitogen-activated protein kinase (MAPK) kinase 1 (MAP3K1) and MAPK-signaling pathway. During the last decade, the involvement of the MAPK pathway in the SRY gene up-regulation during the formation of male gonadal sex in mammals has been demonstrated. The role of MAPK-signaling pathway in the human sex determination is not fully understood. Probably, MAP3K1 and the MAPK-signaling pathway are one of the genetic pathways controlling normal development of human testis. So far, several families and sporadic cases of 46,XY DSD due to mutations in MAP3K1 gene have been reported in the literature. Clinical presentation of DSD in these patients varies from female phenotype with normal externalia to male phenotype with hypospadia. We describe rare cases of the DSD 46,XY (a family case of DSD in uterine sisters and a sporadic case) with mutations in the MAP3K1 gene that haven’t been previously described. The article also presents brief literature review on this pathology.

Keywords: disorders of sex development, gonadal dysgenesis, MAP3K1 gene, case report.

CASE 1

Familial form of sex development disorder in uterine sisters with 46,XY karyotype

Patient O. was registered at birth as a female and brought up as a girl. According to medical records, hypertrophy of the clitoris was found during the primary patronage, the patient was not examined and did not visit endocrinologist. The patient had spontaneous late puberty characterized by abnormal order of the development of secondary sexual characteristics (adrenarche in 14 years, thelarche in 17 years), primary amenorrhea. The patient was first examined at the place of residence at the age of 16 years. Hypergonadotropic hypogonadism was detected (LH 23.4 mIU/ml, FSH 99.1 mIU/ml), 46,XY karyotype.

Nарушение формирования пола 46,XY, ассоциированное с мутациями в гене MAP3K1. Описание клинических случаев

© И.В. Копылова*, Е.С. Кузнецова, И.С. Чугунов, Е.М. Орлова, О.С. Даниленко, Д.Н. Бровин, М.А. Карева, В.А. Петеркова

ФГБУ «Национальный медицинский исследовательский центр эндокринологии» Минздрава России, Москва, Россия

Принципами нарушения формирования пола (НФП) 46,XY могут быть мутации ряда генов, вовлеченных в процесс дифференцировки тонад. XY-инверсия пола может являться также следствием нарушений на уровне гена митоген-активированной протеинкиназы (MAPK) киназы киназы 1 (MAP3K1) и MAPK-сигнального пути. В последнее десятилетие было доказано участие MAPK-пути в инициации экспрессии гена SRY при формировании мужского гонадного пола у млекопитающих. Роль MAPK-сигнального пути в формировании пола у людей изучена недостаточно. Вероятно, MAP3K1 и MAPK-сигнальный путь являются одним из генетических путей, контролирующих нормальное развитие яичек. В настоящее время в литературе описано несколько семей и спорадических случаев НФП 46,XY вследствие мутаций в гене MAP3K1. Клиническая картина НФП у этих пациентов различна и варьирует от женского фенотипа с гипоспадией до мужского фенотипа с нормальным строением наружных гениталий. Мы приводим описания редких клинических случаев нарушений формирования пола 46,XY (семейный случай НФП у единоутробных сестер и спорадический случай) с не описанными ранее мутациями в гене MAP3K1. В статье также кратко анализируется литература по данной патологии.

Ключевые слова: нарушение формирования пола, дисгенезия гонад, ген MAP3K1, клинический случай.
The girl was admitted to the children’s department of the Endocrinology Research Center at the age of 17 years. An objective examination showed normal height (164.3 cm, height SDS +0.35), sexual development corresponded to Tanner stage 2 (V2R2). Maldevelopment of external genitalia was observed [hypertrophied clitoris (2.5—3 cm) with balanus, poorly developed cavernous bodies, meatus at the bottom of the clitoris, split scrotalabial fold, narrowed vaginal orifice]. There were high levels of gonadotropins [LH 88 IU/l (2.6—12), FSH 104 IU/l (1.9—11.7)], estradiol [70 pmol/L (97—592)], and testosterone [3.11 nmol/l (0.1—2.7)]. The levels of dihydroepiandrosterone-sulfate (DHEA-S) and 17-hydroxyprogesterone (17-OHP) were within the reference range [7.52 μmol/L (0.92—7.6), and 3.6 nmol/l (0.1—7.0), respectively]. MRI of pelvic organs showed strand-shaped uterus sized 2.3 × 0.9 cm and gonads (2×1 cm on the right, 0.7×1.4 cm on the left). The patient was diagnosed with 46,XY disorder of sex development and diagnostic laparoscopy was recommended, which showed hypoplastic bicorneate uterus, two fallopian tubes, and dysgenetic gonads on both sides in the pelvis. Morphological examination of surgical specimens at the Endocrinology Research Center verified bilateral gonadoblastoma. Re-examination of histological preparations at the Dmitriy Rogachev National Research Center of Pediatrics, Hematology, Oncology, and Immunology confirmed bilateral gonadoblastoma accompanied by transformation to dysgerminoma on the right side. The girl was consulted by oncologist. Given the results of chest CT scan (neither focal nor infiltrative changes were detected), histological type of the tumor, and the stage of the disease, chemotherapy was not administered. Continuous replacement therapy with female sex hormones was recommended. Hormonal profile at the age of 8.5 months was characterized by slightly elevated levels of FSH (5.28 mIU/ml), low level of testosterone, LH, and 17-OHP. US examination showed testicles localized in the scrotum (right 0.87 × 0.59 cm, left 0.75 × 0.52 cm). Prostate and seminal vesicles were not visualized during pelvic CT scan.

The child was first examined at the Endocrinology Research Center at the age of 11 months. Examination detected abnormal structure of the external genitalia [testes were palpable in the split scrotum, there was about 3-cm-long curved penis, dense cavernous bodies, developed balanus, dissecting sulcus of the penis on the dorsal surface; narrow urogenital sinus opening on the scrotum (scrotal hypospadia); the penis was resected into the scrotum due to its curvature]. There was slight increase in the level of FSH [3.8 IU/l (0—2)], low level of testosterone [0.17 nmol/l (0.3—0.6)], LH [0.2 IU/l (0—1.5), and anti-Müllerian hormone [12.8 ng/ml (63—132)]. Multistream blood test showed no data indicative of impaired steroidogenesis. Chorionic gonadotrophin test (4 injections of 1000 IU) showed increase in testosterone level to 5.7 nmol/l, which was indicative of normal functioning of Leydig cells. The child was diagnosed with 46,XY disorder of sex development and later on underwent corrective surgery to remove penile curvature and hypospadias. Molecular genetic study (“disorder of sex development” gene panel) detected heterozygous mutation s.2858_2872del CAACAACAACAACCA p.944 948del in MAR3K1 gene. This mutation has not been previously described as well. Molecular genetic study of MAR3K1 gene aimed at searching for similar deletion is planned.

CASE 2

Patient M. had abnormal structure of the external genitalia at birth. Examination at the place of residence identified 46,XY karyotype. Hormonal profile at the age of 8.5 months was characterized by slightly elevated levels of FSH (5.28 mIU/ml), low level of testosterone, LH, and 17-OHP. US examination showed testicles localized in the scrotum (right 0.87 × 0.59 cm, left 0.75 × 0.52 cm). Prostate and seminal vesicles were not visualized during pelvic CT scan.

At birth, normal structure of external genitalia was observed. The results of examination at the age of 13 showed 46,XY karyotype, pelvic ultrasound showed aplasia of the uterus and ovaries. During clinical examination, the girl’s height was 155.9 cm (height SDS = −0.64), reproductive status corresponded to Tanner stage 1. Female external genitalia were formed. Laboratory examination confirmed hypergonadotropic hypogonadism [LH 39.9 IU/l (2.6—12), FSH 137 IU/l (1.9—11.7), estradiol 43.3 pmol/l (97—592)], there was normal testosterone level [0.6 nmol/l (0.1—2.7)]. Pelvic MRI scan showed strand-shaped uterus, gonads were not visualized. Diagnostic pelvic laparoscopy detected hypoplastic uterus, two fallopian tubes, and streak gonads. Morphological examination of surgical specimens verified ovo-testicular gonadal dysgenesis.

Both patients underwent molecular genetic testing using massive parallel sequencing with an oligonucleotide panel designed at the Endocrinology Research Center for analysis of 45 genes associated with various forms of disorders of sex development. Heterozygous mutation p.C691R in MAP3K1 gene was detected in both girls. This mutation has not been previously described. To date, no molecular genetic testing of patients’ mother was carried out. However, given the presence of identical heterozygous mutation of MAP3K1 in uterine sisters conceived by different fathers, we can conclude that the missense mutation was inherited from the mother and probably caused 46,XY DSD.

DISCUSSION

MAPK is activated by evolutionarily conservative ternary signaling cascade consisting of mitogen-activated protein kinase (MAP3K1) kinase kinase 1, MAP2K, and MAPK [3]. MAPK-signaling pathways are the key pathways regulating cell proliferation and differentiation [6, 7]. Abnormalities in the regulation of MAPK-cascade
Contribution to the development of several oncological diseases [8]. Association of MAP3K1 with XY,46 disorders of sex development has been recently found, but the role of MAPK-signaling pathway in the development of this disease has not yet been studied in humans. Expression of MAP3K1 is observed in murine embryonic gonad on the 11th day after conception, which corresponds to the stage of gonad development, and on the 13th day after conception in the testicular tubules [4]. The role of MAPK-pathway in sex determination in mammals has been determined by identifying MAP3K4 gene mutations in mice, where sex reversal was presumably related to the inability to activate expression of the SRY gene [9, 10]. It was shown that in the absence of two isoforms of the mitogen-activated protein kinase kinase kinase-1 (p38a and p38b), XY sex reversal is formed, which is also caused by disorders at the level of SRY expression [11]. Thus, the available literature data are indicative of the involvement of MAPK pathway in the initiation of corresponding expression of SRY during the development of male gonadal sex in mammals. In humans, the relationship between mutations in MAP3K1 gene and 46,XY disorder of sex development was first detected during analysis of genes linkage in the long arm of the chromosome 5 in DSD patients from two families and 11 sporadic cases [4]. Six mutations were identified in the MAP3K1 gene and their functional analysis was carried out. In the aforementioned cases, clinical manifestations varied, ranging from completely female phenotype without virilization of external genitalia to males with micropenis and/or hypospadias. Different phenotypes associated with the same mutation were also observed in patients within the same family. Another study involving 4 patients with 46,XY DSD, predominantly male phenotype, and varying degrees of external genitalia development disorders identified mutations in MAP3K1 gene [5]. Comparison of genotype and phenotype associated with one of the identified missense mutation showed that all patients with this mutation were characterized by male phenotype with hypospadias. This missense mutation is also associated with bronchial asthma [12]; malformations of external genitalia have not been previously described. Thus, its role still remains unknown.

Interestingly, sex reversal is not observed in MAP3K1 knockout mice [13, 14]. These animals remain viable with intact reproductive function, but with a reduced amount of Leydig cells and increased length of embryonic gonads. For this reason, the authors suggested that MAP3K1 does not play significant role in the development of testicles in mice. This may indicate that the signaling pathways of MAP-kinase are not identical in human and mouse [3]. To date, the role of MAP3K1 in sex determination in humans remains poorly understood. Phenotype of complete 46,XY gonadal dysgenesis is similar to that with mutations in the SRY gene, i.e. MAP3K1 mutations could affect the early stages of testis development.

Molecular genetic study of our patients with 46,XY DSD using the panel that included 45 genes associated with various disorders of sex development detected mutations only in the MAP3K1 gene. In the aforementioned cases of patients with identified mutations in the MAP3K1 gene, various clinical presentations of XY,46 DSD were observed, which were characterized by various degrees of gonadal differentiation and development of external genitalia. In the first family described in our report, heterozygous mutation inherited from patient’s mother is suggested, which is characteristic of families with 46,XY DSD due to MAP3K1 gene mutations [4]. Identified heterozygous mutations have not been previously reported in the literature. Molecular genetic studies of patients’ parents is planned in order to confirm their pathological significance.

CONCLUSION

46,XY disorder of sex development may be caused by pathology of a number of genes involved in the gonad differentiation. Participation of the MAP3K1 gene and MAP-kinase signaling pathway in the development of DSD has been found recently and it is currently poorly understood. Clinical manifestations in patients with 46,XY DSD presumably caused by mutations in the MAP3K1 gene are characterized by pronounced hetero-
gene. There is no data about the influence of specific modifier alleles, which may be important for the development of various clinical presentations of 46,XY DSD is required.

REFERENCES

AUTHOR ADDRESS

Funding source. Molecular genetic testing using “disorders of sex development” panel of genes was supported by the CAF Foundation for Support and Development of Philanthropy. The authors declare no other explicit or potential conflicts of interest, which must be reported.

Conflict of interest. The authors declare no explicit or potential conflicts of interest associated with publication of this article. Written informed patients’ consent for publication of the reported medical data in this journal was obtained.

ORIGINAL TEXT IN RUSSIAN

Информация об авторах

Копылова Елизавета Михайловна — к.м.н. [Irina V. Kopylova, MD, PhD]; адрес: Россия, Москва, ул. Дм. Ульянова, д. 11 [address: 11 Dm. Ulyanova street, Moscow, 117036, Russia]; ORCID: http://orcid.org/0000-0002-9695-0806; eLibrary SPIN: 1478-0581; e-mail: iv_kopylova@mail.ru

Кузнецова Елена Станиславовна — к.м.н. [Elena S. Kuznetsova, MD]; адрес: Россия, Москва, ул. Дм. Ульянова, д. 11 [address: 11 Dm. Ulyanova street, Moscow, 117036, Russia]; ORCID: http://orcid.org/0000-0003-4915-1267; eLibrary SPIN: 5895-8730; e-mail: staykova.elena@gmail.com

Чугунов Игорь Сергеевич — к.м.н. [Igor S. Chugunov, MD, PhD]; адрес: Россия, Москва, ул. Дм. Ульянова, д. 11 [address: 11 Dm. Ulyanova street, Moscow, 117036, Russia]; ORCID: http://orcid.org/0000-0003-1218-0742; eLibrary SPIN: 2518-9054; e-mail: staykova.elena@gmail.com

Орлова Елизавета Михайловна — к.м.н. [Elizaveta M. Orlova, MD, PhD]; ORCID: http://orcid.org/0000-0003-1872-1792; eLibrary SPIN: 5221-4235; e-mail: elizaveta.orlova@mail.ru

Даниленко Олег Сергеевич — к.м.н. [Oleg S. Danilenko, MD, PhD]; ORCID: http://orcid.org/0000-0001-5656-1382; eLibrary SPIN: 7670-7489; e-mail: oleg.danilenko@yandex.ru

Бровин Дмитрий Николаевич — к.м.н. [Dmitry N. Brovin, MD, PhD]; ORCID: http://orcid.org/0000-0003-1320-6511; eLibrary SPIN: 2518-9504; e-mail: brovin-dn@yandex.ru

Карева Мария Андреевна — к.м.н. [Maria A. Kareva, MD, PhD]; ORCID: http://orcid.org/0000-0003-5507-4627; eLibrary SPIN: 5221-4235; e-mail: i_marusya@mail.ru

Петкерова Валентина Александровна — акад. РАН [Valentina A. Peterkova, MD, PhD, Professor]; ORCID: http://orcid.org/0000-0002-9695-0806; eLibrary SPIN: 5895-8730; e-mail: peterkova@hotmail.com

Информация. Рукопись получена: 16.03.17. Оригинальна к публикации: 22.03.17.

АДДИТИВНАЯ ИНФОРМАЦИЯ

Funding source. Molecular genetic testing using “disorders of sex development” panel of genes was supported by the CAF Foundation for Support and Development of Philanthropy. The authors declare no other explicit or potential conflicts of interest, which must be reported.

Conflict of interest. The authors declare no explicit or potential conflicts of interest associated with publication of this article. Written informed patients’ consent for publication of the reported medical data in this journal was obtained.