The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Sliman Ya.A.

Burdenko Neurosurgical Center;
Moscow Institute of Physics and Technology (National Research University)

Samoylenkova N.S.

Burdenko Neurosurgical Center

Antipova O.M.

Lomonosov Moscow State University

Brylev V.A.

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Veryutin D.A.

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Sapozhnikova K.A.

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences

Alekseeva A.I.

Avtsyn Research Institute of Human Morphology of federal state budgetary scientific institution «Petrovsky national research centre of surgery»;
Institute of Higher Nervous Activity and Neurophysiology

Pronin I.N.

Burdenko Neurosurgical Center

Kopylov A.M.

Lomonosov Moscow State University

Pavlova G.V.

Burdenko Neurosurgical Center;
Institute of Higher Nervous Activity and Neurophysiology;
Sechenov First Moscow State Medical University

Covalently conjugated DNA aptamer with doxorubicin as in vitro model for effective targeted drug delivery to human glioblastoma tumor cells

Authors:

Sliman Ya.A., Samoylenkova N.S., Antipova O.M., Brylev V.A., Veryutin D.A., Sapozhnikova K.A., Alekseeva A.I., Pronin I.N., Kopylov A.M., Pavlova G.V.

More about the authors

Journal: Burdenko's Journal of Neurosurgery. 2024;88(1): 48‑55

Read: 1950 times


To cite this article:

Sliman YaA, Samoylenkova NS, Antipova OM, et al. . Covalently conjugated DNA aptamer with doxorubicin as in vitro model for effective targeted drug delivery to human glioblastoma tumor cells. Burdenko's Journal of Neurosurgery. 2024;88(1):48‑55. (In Russ., In Engl.)
https://doi.org/10.17116/neiro20248801148

Recommended articles:
Glymphatic system in health and disease: a narrative review. Burdenko's Journal of Neurosurgery. 2025;(4):112-118

References:

  1. Wrensch M, Wiencke J, Molinaro A, Taylor J. Genetic and molecular epidemiology of adult diffuse glioma. Nature Reviews Neurology. 2019;15(7): 405-417 . https://doi.org/10.1038/s41582-019-0220-2
  2. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505-510.  https://doi.org/10.1126/science.220012
  3. Pool M, de Boer HR, Lub-de Hooge MN, van Vugt MA, de Vries EG. Harnessing integrative omics to facilitate molecular imaging of the human epidermal growth factor receptor family for precision medicine. Theranostics. 2017;7(7):2111. https://doi.org/10.7150/thno.17934
  4. Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nature reviews Drug discovery. 2017;16(3):181-202.  https://doi.org/10.1038/nrd.2016.199
  5. Gao F, Yin J, Chen Y, Guo C, Hu H, Su J. Recent advances in aptamer-based targeted drug delivery systems for cancer therapy. Frontiers in Bioengineering and Biotechnology. 2022;10:972933. https://doi.org/10.3389/fbioe.2022.972933
  6. Cesarini V, Scopa C, Silvestris DA, Scafidi A, Petrera V, Del Baldo G, Gallo A. Aptamer-based in vivo therapeutic targeting of glioblastoma. Molecules. 2020;25(18):4267. https://doi.org/10.3390/molecules25184267
  7. Nimjee SM, White RR, Becker RC, Sullenger BA. Aptamers as therapeutics. Annual review of pharmacology and toxicology. 2017;57:61-79.  https://doi.org/10.1146/annurev-pharmtox-010716-104558
  8. Huang YF, Shangguan D, Liu H, Phillips JA, Zhang X, Chen Y, Tan W. Molecular assembly of an aptamer—drug conjugate for targeted drug delivery to tumor cells. ChemBioChem. 2009;10(5):862-868.  https://doi.org/10.1002/cbic.200800805
  9. Sangeeta R. An overview of doxorubicin formulations in cancer therapy. Journal of cancer research and therapeutics. 2014;10(4):853-858.  https://doi.org/10.4103/0973-1482.13926
  10. Yang C, Jiang Y, Hao SH, Yan XY, Naranmandura H. Aptamers: an emerging navigation tool of therapeutic agents for targeted cancer therapy. Journal of Materials Chemistry B. 2022;10(1):20-33.  https://doi.org/10.1039/d1tb02098f
  11. Zhu G, Meng L, Ye M, Yang L, Sefah K, O’Donoghue MB, Chen Y, Xiong X, Huang J, Song E, Tan W. Self-assembled aptamer-based drug carriers for bispecific cytotoxicity to cancer cells. Chemistry — An Asian Journal. 2012;7(7):1630-1636. https://doi.org/10.1002/asia.201101060
  12. Kopylov AM, Golovin AV, Pavlova GV, Zav’yalova YeG, Turashev AD, Antipova OM, Babiy VYe. DNK-aptamer, svyazyvayushchiy vnekletochnyy domen EGFR. Patent RF na izobreteniye №2700097/12.09.2019. Byul. №26. (In Russ.).
  13. Zavyalova E, Turashev A, Novoseltseva A, Legatova V, Antipova O, Savchenko E, Kopylov A. Pyrene-modified DNA aptamers with high affinity to wild-type EGFR and EGFRvIII. Nucleic acid therapeutics. 2020;30(3):175-187.  https://doi.org/10.1089/nat.2019.0830
  14. Kho D, MacDonald C, Johnson R, Unsworth CP, O’Carroll SJ, Du Mez E, Graham ES. Application of xCELLigence RTCA biosensor technology for revealing the profile and window of drug responsiveness in real time. Biosensors. 2015;5(2):199-222.  https://doi.org/10.3390/bios5020199

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.