The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Dobrynina L.A.

Research Center of Neurology

Kremneva E.I.

Research Center of Neurology

Geints A.A.

Research Centre of Neurology

Shlapakova P.S.

Research Center of Neurology

Shamtieva K.V.

Research Center of Neurology

Shabalina A.A.

Research Center of Neurology

Gnedovskaya E.V.

Research Center of Neurology

Cerebral microangiopathy

Authors:

Dobrynina L.A., Kremneva E.I., Geints A.A., Shlapakova P.S., Shamtieva K.V., Shabalina A.A., Gnedovskaya E.V.

More about the authors

Read: 1329 times


To cite this article:

Dobrynina LA, Kremneva EI, Geints AA, Shlapakova PS, Shamtieva KV, Shabalina AA, Gnedovskaya EV. Cerebral microangiopathy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(7):15‑24. (In Russ.)
https://doi.org/10.17116/jnevro202512507115

Recommended articles:
Animal expe­rimental models in the study of age-dependent cere­bral microangiopathy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(3-2):57-68
Personal characteristics of patients with cere­bral microangiopathy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(3):51-56
Differential diagnosis of Alzheimer’s disease and vascular cognitive diso­rders. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4-2):26-35

References:

  1. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurology. 2010;9(7):689-701.  https://doi.org/10.1016/S1474-4422(10)70104-6
  2. Wardlaw JM, Smith EE, Biessels GJ et al. STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurology. 2013;12(8):822-38.  https://doi.org/10.1016/S1474-4422(13)70124-8
  3. Markus HS, van Der Flier WM, Smith EE, et al. Framework for Clinical Trials in Cerebral Small Vessel Disease (FINESSE): A Review. JAMA Neurology. 2022;79(11):1187-1198. https://doi.org/10.1001/jamaneurol.2022.2262
  4. Smith EE, Markus HS. New Treatment Approaches to Modify the Course of Cerebral Small Vessel Diseases. Stroke. 2020;51(1):38-46.  https://doi.org/10.1161/STROKEAHA.119.024150
  5. Duering M, Biessels GJ, Brodtmann A, et al. Neuroimaging standards for research into small vessel disease-advances since 2013. Lancet Neurology. 2023;22(7):602-618.  https://doi.org/10.1016/S1474-4422(23)00131-X
  6. Charidimou A, Boulouis G, Frosch MP, et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI-neuropathology diagnostic accuracy study. Lancet Neurology. 2022;21(8):714-725.  https://doi.org/10.1016/S1474-4422(22)00208-3
  7. Renard D. Cerebral microbleeds: a magnetic resonance imaging review of common and less common causes. European Journal of Neurology. 2018;25(3):441-450.  https://doi.org/10.1111/ene.13544
  8. Tsai HH, Pasi M, Tsai LK, et al. Microangiopathy underlying mixed-location intracerebral hemorrhages/microbleeds: A PiB-PET study. Neurology. 2019;92(8):e774-e781. https://doi.org/10.1212/WNL.0000000000006953
  9. Dobrynina LA, Gnedovskaya EV, Zabitova MR, et al. Clustering of diagnostic MRI signs of cerebral microangiopathy and its relationship with markers of inflammation and angiogenesis. Zhurnal nevrologii i psihiatrii im. S.S. Korsakova. Specvypuski. 2020;120(12-2):22-31. (In Russ.). https://doi.org/10.17116/jnevro202012012222
  10. Kremneva EI, Zabitova MR, Shamtieva KV, et al. Analysis of Distribution and Grouping of MRI Characteristics of Age-Related Cerebral Microangiopathy. Human Physiology. 2021;47:901-910.  https://doi.org/10.1134/S0362119721080119
  11. Muñoz Maniega S, Chappell FM, Valdés Hernández MC, et al. Integrity of normal-appearing white matter: Influence of age, visible lesion burden and hypertension in patients with small-vessel disease. Journal of Cerebral Blood Flow & Metabolism. 2017;37(2):644-656.  https://doi.org/10.1177/0271678X16635657
  12. Maillard P, Fletcher E, Harvey D, et al. White matter hyperintensity penumbra. Stroke. 2011;42(7):1917-22.  https://doi.org/10.1161/STROKEAHA.110.609768
  13. Maniega SM, Valdés Hernández MC, Clayden JD, et al. White matter hyperintensities and normal-appearing white matter integrity in the aging brain. Neurobiology of Aging. 2015;36(2):909-18.  https://doi.org/10.1016/j.neurobiolaging.2014.07.048
  14. Lawrence AJ, Patel B, Morris RG, et al. Mechanisms of cognitive impairment in cerebral small vessel disease: multimodal MRI results from the St George’s cognition and neuroimaging in stroke (SCANS) study. PLoS One. 2013;8(4):e61014. https://doi.org/10.1371/journal.pone.0061014
  15. Song SK, Yoshino J, Le TQ, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage. 2005;26(1):132-40.  https://doi.org/10.1016/j.neuroimage.2005.01.028
  16. Sepehrband F, Clark KA, Ullmann JF, et al. Brain tissue compartment density estimated using diffusion-weighted MRI yields tissue parameters consistent with histology. Human Brain Mapping. 2015;36(9):3687-702.  https://doi.org/10.1002/hbm.22872
  17. Gouw AA, Seewann A, van der Flier WM, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. Journal of Neurology, Neurosurgery and Psychiatry. 2011;82(2):126-35.  https://doi.org/10.1136/jnnp.2009.204685
  18. Kremneva EI, Maximov II, Dobrynina LA at al. The assessment of cerebral white matter microstructure in cerebral small vessel disease based on the diffusion-weighted magnetic resonance imaging. Annaly klinicheskoj i eksperimental’noj nevrologii. 2020;14(1):33-43. (In Russ.). https://doi.org/10.25692/ACEN.2020.1.4
  19. Konieczny MJ, Dewenter A, Ter Telgte A, et al. Multi-shell Diffusion MRI Models for White Matter Characterization in Cerebral Small Vessel Disease. Neurology. 2021;96(5):e698-e708. https://doi.org/10.1212/WNL.0000000000011213
  20. Raghavan S, Przybelski SA, Reid RI, et al. White matter damage due to vascular, tau, and TDP-43 pathologies and its relevance to cognition. Acta Neuropathologica Communications. 2022;10(1):16.  https://doi.org/10.1186/s40478-022-01319-6
  21. Dobrynina LA, Kremneva EI, Shamtieva KV, et al. Disruption of corpus callosum microstructural integrity by diffusion MRI as a predictor of progression of cerebral microangiopathy. Zhurnal nevrologii i psihiatrii im. C.C. Korsakova. 2023;123(11):95-104. (In Russ.). https://doi.org/10.17116/jnevro202312311195
  22. Dobrynina LA, Kremneva EI, Shamtieva KV, et al. Cognitive Impairment in Cerebral Small Vessel Disease Is Associated with Corpus Callosum Microstructure Changes Based on Diffusion MRI. Diagnostics (Basel). 2024;14(16):1838. https://doi.org/10.3390/diagnostics14161838
  23. Bauer CE, Zachariou V, Seago E, Gold BT. White Matter Hyperintensity Volume and Location: Associations With WM Microstructure, Brain Iron, and Cerebral Perfusion. Frontiers in Aging Neuroscience. 2021;13:617947. https://doi.org/10.3389/fnagi.2021.617947
  24. Van den Brink H, Doubal FN, Duering M. Advanced MRI in cerebral small vessel disease. International Journal of Stroke. 2023 Jan;18(1):28-35.  https://doi.org/10.1177/17474930221091879
  25. Duering M, Schmidt R. Remote changes after ischaemic infarcts: a distant target for therapy? Brain. 2017;140(7):1818-1820. https://doi.org/10.1093/brain/awx135
  26. Iannucci G, Dichgans M, Rovaris M, et al. Correlations between clinical findings and magnetization transfer imaging metrics of tissue damage in individuals with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke. 2001;32(3):643-8.  https://doi.org/10.1161/01.str.32.3.643
  27. Langkammer C, Krebs N, Goessler W, et al. Quantitative MR imaging of brain iron: a postmortem validation study. Radiology. 2010;257(2):455-62.  https://doi.org/10.1148/radiol.10100495
  28. Van Leijsen EMC, van Uden IWM, Ghafoorian M, et al. Nonlinear temporal dynamics of cerebral small vessel disease: The RUN DMC study. Neurology. 2017;89(15):1569-1577. https://doi.org/10.1212/WNL.0000000000004490
  29. Seiler S, Pirpamer L, Hofer E, et al. Magnetization transfer ratio relates to cognitive impairment in normal elderly. Frontiers in Aging Neuroscience. 2014;6:263.  https://doi.org/10.3389/fnagi.2014.00263
  30. Dobrynina LA, Gadzhieva ZSh, Akhmetzyanov BM, et al. The role of arterial, venous blood and cerebrospinal fluid flow disturbances in forming cognitive impairment types in age-related cerebral microangiophathy. Zhurnal nevrologii i psihiatrii im. C.C. Korsakova. 2019;119(12-2):81-88. (In Russ.). https://doi.org/10.17116/jnevro201911912281
  31. Dobrynina L.A., Gadzhieva Z.Sh., Shamtieva K.V et al. Relations of impaired blood flow and cerebrospinal fluid flow with damage of strategic for cognitive impairment brain regiones in cerebral small vessel disease. Annaly klinicheskoj i eksperimental’noj nevrologii. 2022;16(2):25-35. (In Russ.). https://doi.org/10.54101/ACEN.2022.2.3
  32. Kang CK, Park CA, Park CW, et al. Lenticulostriate arteries in chronic stroke patients visualised by 7 T magnetic resonance angiography. International Journal of Stroke. 2010;5(5):374-80.  https://doi.org/10.1111/j.1747-4949.2010.00464.x
  33. Sun C, Wu Y, Ling C, et al. Reduced blood flow velocity in lenticulostriate arteries of patients with CADASIL assessed by PC-MRA at 7T. Journal of Neurology, Neurosurgery and Psychiatry. 2022;93(4):451-452.  https://doi.org/10.1136/jnnp-2021-326258
  34. Liu P, De Vis JB, Lu H. Cerebrovascular reactivity (CVR) MRI with CO2 challenge: A technical review. Neuroimage. 2019;187:104-115.  https://doi.org/10.1016/j.neuroimage.2018.03.047
  35. Blair GW, Thrippleton MJ, Shi Y, et al. Intracranial hemodynamic relationships in patients with cerebral small vessel disease. Neurology. 2020;94(21):e2258-e2269. https://doi.org/10.1212/WNL.0000000000009483
  36. Essig M, Shiroishi MS, Nguyen TB, et al. Perfusion MRI: the five most frequently asked technical questions. American Journal of Roentgenology. 2013;200(1):24-34.  https://doi.org/10.2214/AJR.12.9543
  37. Jann K, Shao X, Ma SJ, et al. Evaluation of Cerebral Blood Flow Measured by 3D PCASL as Biomarker of Vascular Cognitive Impairment and Dementia (VCID) in a Cohort of Elderly Latinx Subjects at Risk of Small Vessel Disease. Frontiers in neuroscience. 2021;15:627627. https://doi.org/10.3389/fnins.2021.627627
  38. Sun Y, Cao W, Ding W, et al. Cerebral Blood Flow Alterations as Assessed by 3D ASL in Cognitive Impairment in Patients with Subcortical Vascular Cognitive Impairment: A Marker for Disease Severity. Frontiers in Aging Neuroscience. 2016;8:211.  https://doi.org/10.3389/fnagi.2016.00211
  39. Binnie LR, Pauls MMH, Benjamin P, et al. Test-retest reliability of arterial spin labelling for cerebral blood flow in older adults with small vessel disease. Translational Stroke Research. 2022;13(4):583-594.  https://doi.org/10.1007/s12975-021-00983-5
  40. Hernandez-Garcia L, Lahiri A, Schollenberger J. Recent progress in ASL. Neuroimage. 2019;187:3-16.  https://doi.org/10.1016/j.neuroimage.2017.12.095
  41. Thompson G, Mills SJ, Stivaros SM, Jackson A. Imaging of brain tumors: perfusion/permeability. Neuroimaging clinics of North America. 2010;20(3):337-53.  https://doi.org/10.1016/j.nic.2010.04.008
  42. Petersen ET, Zimine I, Ho YC, Golay X. Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. The British Journal of Radiology. 2006;79(944):688-701.  https://doi.org/10.1259/bjr/67705974
  43. Badji A, Youwakim J, Cooper A, et al. Vascular cognitive impairment — Past, present, and future challenges. Ageing Research Reviews. 2023;90:102042. https://doi.org/10.1016/j.arr.2023.102042
  44. Gao YZ, Zhang JJ, Liu H, et al. Regional cerebral blood flow and cerebrovascular reactivity in Alzheimer’s disease and vascular dementia assessed by arterial spinlabeling magnetic resonance imaging. Current Neurovascular Research. 2013;10(1):49-53.  https://doi.org/10.2174/156720213804806016
  45. Schuff N, Matsumoto S, Kmiecik J, et al. Cerebral blood flow in ischemic vascular dementia and Alzheimer’s disease, measured by arterial spin-labeling magnetic resonance imaging. Alzheimer’s & Dementia. 2009;5(6):454-62.  https://doi.org/10.1016/j.jalz.2009.04.1233
  46. Ye Q, Bai F. Contribution of diffusion, perfusion and functional MRI to the disconnection hypothesis in subcortical vascular cognitive impairment. Stroke and Vascular Neurology. 2018;3(3):131-139.  https://doi.org/10.1136/svn-2017-000080
  47. Blicher JU, Stagg CJ, O’Shea J, et al. Visualization of altered neurovascular coupling in chronic stroke patients using multimodal functional MRI. Journal of Cerebral Blood Flow & Metabolism. 2012;32(11):2044-54.  https://doi.org/10.1038/jcbfm.2012.105
  48. Huang D, Guo Y, Guan X, et al. Recent advances in arterial spin labeling perfusion MRI in patients with vascular cognitive impairment. Journal of Cerebral Blood Flow & Metabolism. 2023;43(2):173-184.  https://doi.org/10.1177/0271678X221135353
  49. Liu X, Cheng R, Chen L, et al. Altered Neurovascular Coupling in Subcortical Ischemic Vascular Disease. Frontiers in Aging Neuroscience. 2021;13:598365. https://doi.org/10.3389/fnagi.2021.598365
  50. Promjunyakul NO, Lahna DL, Kaye JA, et al. Comparison of cerebral blood flow and structural penumbras in relation to white matter hyperintensities: A multi-modal magnetic resonance imaging study. Journal of Cerebral Blood Flow & Metabolism. 2016;36(9):1528-36.  https://doi.org/10.1177/0271678X16651268
  51. Mestre H, Kostrikov S, Mehta RI, Nedergaard M. Perivascular spaces, glymphatic dysfunction, and small vessel disease. Clinical Science. 2017;131(17):2257-2274. https://doi.org/10.1042/CS20160381
  52. Tang J, Zhang M, Liu N, et al. The Association Between Glymphatic System Dysfunction and Cognitive Impairment in Cerebral Small Vessel Disease. Frontiers in Aging Neuroscience. 2022;14:916633. https://doi.org/10.3389/fnagi.2022.916633
  53. Taoka T, Masutani Y, Kawai H, et al. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer’s disease cases. Japanese Journal of Radiology. 2017;35(4):172-178.  https://doi.org/10.1007/s11604-017-0617-z
  54. Dobrynina LA, Shamtieva KV, Kremneva EI, et al. Controlled arterial hypertension and blood-brain barrier damage in patients with age-related cerebral small vessel disease and cognitive impairments. Zhurnal nevrologii i psihiatrii im. C.C. Korsakova. 2022;122(11):74-79. (In Russ.). https://doi.org/10.17116/jnevro202212211174
  55. Topakian R, Barrick TR, Howe FA, Markus HS. Blood-brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis. Journal of Neurology, Neurosurgery and Psychiatry. 2010 ;81(2):192-7.  https://doi.org/10.1136/jnnp.2009.172072
  56. Wardlaw JM, Makin SJ, Valdés Hernández MC, et al. Blood-brain barrier failure as a core mechanism in cerebral small vessel disease and dementia: evidence from a cohort study. Alzheimer’s & Dementia. 2017;13(6):634-643.  https://doi.org/10.1016/j.jalz.2016.09.006
  57. Ercan E, Magro-Checa C, Valabregue R, et al. Glial and axonal changes in systemic lupus erythematosus measured with diffusion of intracellular metabolites. Brain. 2016;139(Pt 5):1447-57.  https://doi.org/10.1093/brain/aww031
  58. Zwanenburg JJM, van Osch MJP. Targeting Cerebral Small Vessel Disease With MRI. Stroke. 2017;48(11):3175-3182. https://doi.org/10.1161/STROKEAHA.117.016996
  59. Gannushkina IV, Lebedeva NV. Hypertensive encephalopathy. M.: Meditsina; 1987:224 (In Russ.).
  60. Gulevskaia TS, Liudkovskaia IG. Arterial hypertension and pathology of cerebral white matter. Arhiv patologii. 1992;54(2):53-59. (In Russ.).
  61. Williamson JD, Pajewski NM, Auchus AP, et al. Effect of Intensive vs Standard Blood Pressure Control on Probable Dementia: A Randomized Clinical Trial. JAMA. 2019;321(6):553-561.  https://doi.org/10.1001/jama.2018.21442
  62. Su C, Wu H, Yang X, et al. The relation between antihypertensive treatment and progression of cerebral small vessel disease: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore). 2021;100(30):e26749. https://doi.org/10.1097/MD.0000000000026749
  63. Weber R, Weimar C, Blatchford J, et al. Telmisartan on top of antihypertensive treatment does not prevent progression of cerebral white matter lesions in the prevention regimen for effectively avoiding second strokes (PRoFESS) MRI substudy. Stroke. 2012;43(9):2336-42.  https://doi.org/10.1161/STROKEAHA.111.648576
  64. World Health Organization. Guideline: Sodium Intake for Adults and Children. Geneva: World Health Organization; 2012.
  65. Schreiber S, Bueche CZ, Garz C, et al. Blood brain barrier breakdown as the starting point of cerebral small vessel disease? — New insights from a rat model. Experimental & Translational Stroke Medicine. 2013;5(1):4.  https://doi.org/10.1186/2040-7378-5-4
  66. Heye AK, Thrippleton MJ, Chappell FM, et al. Blood pressure and sodium: Association with MRI markers in cerebral small vessel disease. Journal of Cerebral Blood Flow & Metabolism. 2016;36(1):264-74.  https://doi.org/10.1038/jcbfm.2015.64
  67. Makin SDJ, Mubki GF, Doubal FN, et al. Small Vessel Disease and Dietary Salt Intake: Cross-Sectional Study and Systematic Review. Journal of Stroke & Cerebrovascular Diseases. 2017;26(12):3020-3028. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.08.004
  68. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurology. 2013;12(5):483-97.  https://doi.org/10.1016/S1474-4422(13)70060-7
  69. Hassan A, Gormley K, O’Sullivan M, et al. Endothelial nitric oxide gene haplotypes and risk of cerebral small-vessel disease. Stroke. 2004;35(3):654-9.  https://doi.org/10.1161/01.STR.0000117238.75736.53
  70. Song J, Kim OJ, Kim HS, et al. Endothelial nitric oxide synthase gene polymorphisms and the risk of silent brain infarction. International Journal of Molecular Medicine. 2010;25(5):819-23.  https://doi.org/10.3892/ijmm_00000410
  71. Liao FF, Lin G, Chen X, et al. Endothelial Nitric Oxide Synthase-Deficient Mice: A Model of Spontaneous Cerebral Small-Vessel Disease. American Journal of Pathology. 2021;191(11):1932-1945. https://doi.org/10.1016/j.ajpath.2021.02.022
  72. Katusic ZS, d’Uscio LV, He T. Emerging Roles of Endothelial Nitric Oxide in Preservation of Cognitive Health. Stroke. 2023;54(3):686-696.  https://doi.org/10.1161/STROKEAHA.122.041444
  73. Oberleithner H, Wilhelmi M. Determination of erythrocyte sodium sensitivity in man. Pflugers Archiv. 2013;465(10):1459-66.  https://doi.org/10.1007/s00424-013-1289-x
  74. Postnov YuV, Orlov SN. Pervichnaya gipertenziya kak patologiya kletochnyh membran. M.: Medicina; 1987. (In Russ.).
  75. Cortese-Krott MM, Kelm M. Endothelial nitric oxide synthase in red blood cells: key to a new erythrocrine function? Redox Biology. 2014 ;2:251-8.  https://doi.org/10.1016/j.redox.2013.12.027
  76. Gladwin MT. Endothelium Seeing Red: Should We Redefine eNOS as the Endothelial and Erythrocytic NOS? Circulation. 2021;144(11):890-892.  https://doi.org/10.1161/CIRCULATIONAHA.121.055679
  77. Simmonds MJ, Detterich JA, Connes P. Nitric oxide, vasodilation and the red blood cell. Biorheology. 2014;51(2-3):121-34.  https://doi.org/10.3233/BIR-140653
  78. Menshikov VV. Laboratory Research Methods in Clinic. M.: Meditsina. 1987:368 (In Russ.).
  79. Oberleithner H, Peters W, Kusche-Vihrog K, et al. Salt overload damages the glycocalyx sodium barrier of vascular endothelium. Pflugers Archiv. 2011;462(4):519-28.  https://doi.org/10.1007/s00424-011-0999-1
  80. Kusche-Vihrog K, Jeggle P, Oberleithner H. The role of ENaC in vascular endothelium. Pflugers Archiv. 2014;466(5):851-9.  https://doi.org/10.1007/s00424-013-1356-3
  81. Dobrynina LA, Shabalina AA, Shamtieva KV, et al. Nitric oxide availability in cerebral microangiopathy. Zhurnal nevrologii i psihiatrii im. C.C. Korsakova. 2023;123(8-2):47-54. (In Russ.). https://doi.org/10.17116/jnevro202312308247
  82. Dobrynina LA, Shabalina AA, Shamtieva KV, et al. Salt sensitivity and osmotic fragility are newly specified risk factors for age-related cerebral microangiopathy. Zhurnal nevrologii i psihiatrii im. C.C. Korsakova. 2021;121(3):77-85. (In Russ.). https://doi.org/10.17116/jnevro202112103177
  83. Hainsworth AH, Allan SM, Boltze J, et al. Translational models for vascular cognitive impairment: a review including larger species. BMC Medicine. 2017;15(1):16.  https://doi.org/10.1186/s12916-017-0793-9
  84. Hainsworth AH, Markus HS. Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. Journal of Cerebral Blood Flow & Metabolism. 2008;28(12):1877-91.  https://doi.org/10.1038/jcbfm.2008.91
  85. Hainsworth AH, Markus HS, Schneider JA. Cerebral Small Vessel Disease, Hypertension, and Vascular Contributions to Cognitive Impairment and Dementia. Hypertension. 2024 Jan;81(1):75-86.  https://doi.org/10.1161/HYPERTENSIONAHA.123.19943
  86. Wardlaw JM, Sandercock PA, Dennis MS, Starr J. Is breakdown of the blood-brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke. 2003;34(3):806-12.  https://doi.org/10.1161/01.STR.0000058480.77236.B3
  87. Wong SM, Jansen JFA, Zhang CE, et al. Blood-brain barrier impairment and hypoperfusion are linked in cerebral small vessel disease. Neurology. 2019;92(15):e1669-e1677. https://doi.org/10.1212/WNL.0000000000007263
  88. Liu Y, Braidy N, Poljak A, et al. Cerebral small vessel disease and the risk of Alzheimer’s disease: A systematic review. Ageing Research Reviews. 2018;47:41-48.  https://doi.org/10.1016/j.arr.2018.06.002
  89. Mustapha M, Nassir CMNCM, Aminuddin N, et al. Cerebral Small Vessel Disease (CSVD) — Lessons From the Animal Models. Frontiers In Physiology. 2019;10:1317. https://doi.org/10.3389/fphys.2019.01317
  90. Cuadrado-Godia E, Dwivedi P, Sharma S, et al. Cerebral Small Vessel Disease: A Review Focusing on Pathophysiology, Biomarkers, and Machine Learning Strategies. Journal of stroke. 2018;20(3):302-320.  https://doi.org/10.5853/jos.2017.02922
  91. Tan XL, Xue YQ, Ma T, et al. Partial eNOS deficiency causes spontaneous thrombotic cerebral infarction, amyloid angiopathy and cognitive impairment. Molecular Neurodegeneration. 2015;10:24.  https://doi.org/10.1186/s13024-015-0020-0
  92. Duarte JMN. Concentrations of glutamate and N-acetylaspartate detected by magnetic resonance spectroscopy in the rat hippocampus correlate with hippocampal-dependent spatial memory performance. Frontiers in Molecular Neuroscience. 2024;17:1458070. https://doi.org/10.3389/fnmol.2024.1458070
  93. Lee JH, Park SY, Shin YW, et al. Neuroprotection by cilostazol, a phosphodiesterase type 3 inhibitor, against apoptotic white matter changes in rat after chronic cerebral hypoperfusion. Brain Research. 2006;1082(1):182-91.  https://doi.org/10.1016/j.brainres.2006.01.088
  94. Omote Y, Deguchi K, Kono S, et al. Neurovascular protection of cilostazol in stroke-prone spontaneous hypertensive rats associated with angiogenesis and pericyte proliferation. Journal of Neuroscience Research. 2014;92(3):369-74.  https://doi.org/10.1002/jnr.23327
  95. Yoshida H, Itoh S, Ferdousi F, Isoda H. Post-stroke treatment with K-134, a phosphodiesterase 3 inhibitor, improves stroke outcomes in the stroke-prone spontaneously hypertensive rat model-A comparative evaluation of antiplatelet drugs. Journal of Pharmacological Sciences. 2022;148(2):229-237.  https://doi.org/10.1016/j.jphs.2021.12.001
  96. Lan C, Chen X, Zhang Y, et al. Curcumin prevents strokes in stroke-prone spontaneously hypertensive rats by improving vascular endothelial function. BMC Cardiovascular Disorders. 2018;18(1):43.  https://doi.org/10.1186/s12872-018-0768-6
  97. Wang X, Li G, Shen W. Protective effects of D-Limonene against transient cerebral ischemia in stroke-prone spontaneously hypertensive rats. Experimental and Therapeutic Medicine. 2018;15(1):699-706.  https://doi.org/10.3892/etm.2017.5509
  98. Tak YG, Farnham PJ. Making sense of GWAS: using epigenomics and genome engineering to understand the functional relevance of SNPs in non-coding regions of the human genome. Epigenetics & Chromatin. 2015;8:57.  https://doi.org/10.1186/s13072-015-0050-4
  99. Bhagat R, Marini S, Romero JR. Genetic considerations in cerebral small vessel diseases. Frontiers in Neurology. 2023;14:1080168. https://doi.org/10.3389/fneur.2023.1080168
  100. Traylor M, Persyn E, Tomppo L, et al. Genetic basis of lacunar stroke: a pooled analysis of individual patient data and genome-wide association studies. Lancet Neurology. 2021;20(5):351-361.  https://doi.org/10.1016/S1474-4422(21)00031-4
  101. Persyn E, Hanscombe KB, Howson JMM, et al. Genome-wide association study of MRI markers of cerebral small vessel disease in 42,310 participants. Nature Communications. 2020;11(1):2175. https://doi.org/10.1038/s41467-020-15932-3
  102. Mishra A, Duplaà C, Vojinovic D, et al. Gene-mapping study of extremes of cerebral small vessel disease reveals TRIM47 as a strong candidate. Brain. 2022;145(6):1992-2007. https://doi.org/10.1093/brain/awab432
  103. Armstrong NJ, Mather KA, Sargurupremraj M, et al. Common Genetic Variation Indicates Separate Causes for Periventricular and Deep White Matter Hyperintensities. Stroke. 2020;51(7):2111-2121. https://doi.org/10.1161/STROKEAHA.119.027544
  104. Chung J, Marini S, Pera J, et al. Genome-wide association study of cerebral small vessel disease reveals established and novel loci. Brain. 2019;142(10):3176-3189. https://doi.org/10.1093/brain/awz233
  105. Duperron MG, Knol MJ, Le Grand Q, et al. Genomics of perivascular space burden unravels early mechanisms of cerebral small vessel disease. Nature Medicine. 2023;29(4):950-962.  https://doi.org/10.1038/s41591-023-02268-w
  106. Sachdev PS, Thalamuthu A, Mather KA, et al. White Matter Hyperintensities Are Under Strong Genetic Influence. Stroke. 2016;47(6):1422-8.  https://doi.org/10.1161/STROKEAHA.116.012532
  107. Tvardovskiy A, Schwämmle V, Kempf SJ, et al. Accumulation of histone variant H3.3 with age is associated with profound changes in the histone methylation landscape. Nucleic Acids Research. 2017;45(16):9272-9289. https://doi.org/10.1093/nar/gkx696
  108. Sargurupremraj M, Suzuki H, Jian X, et al. Cerebral small vessel disease genomics and its implications across the lifespan. Nature Communications. 2020;11(1):6285. https://doi.org/10.1038/s41467-020-19111-2
  109. Duperron MG, Tzourio C, Sargurupremraj M, et al. Burden of Dilated Perivascular Spaces, an Emerging Marker of Cerebral Small Vessel Disease, Is Highly Heritable. Stroke. 2018;49(2):282-287.  https://doi.org/10.1161/STROKEAHA.117.019309
  110. Vilor-Tejedor N, Ciampa I, Operto G, et al. Perivascular spaces are associated with tau pathophysiology and synaptic dysfunction in early Alzheimer’s continuum. Alzheimer’s Research & Therapy. 2021;13(1):135.  https://doi.org/10.1186/s13195-021-00878-5
  111. Hussong SA, Banh AQ, Van Skike CE, et al. Soluble pathogenic tau enters brain vascular endothelial cells and drives cellular senescence and brain microvascular dysfunction in a mouse model of tauopathy. Nature Communications. 2023;14(1):2367. https://doi.org/10.1038/s41467-023-37840-y

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.