The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Poimanova E.Yu.

Enikolopov Institute of Synthetic Polymer Materials of the Russian Academy of Sciences

Abramov A.A.

Enikolopov Institute of Synthetic Polymer Materials of the Russian Academy of Sciences

Poimanov V.D.

Enikolopov Institute of Synthetic Polymer Materials of the Russian Academy of Sciences

Trul A.A.

Enikolopov Institute of Synthetic Polymer Materials of the Russian Academy of Sciences

Boiko Ya.Yu.

Vologda Regional Anti-Tuberculosis Dispensary

Ushakova N.B.

Vologda Regional Anti-Tuberculosis Dispensary

Shipulin G.A.

Center for Strategic Planning and Management of Medical and Biological Health Risks

Yudin S.M.

Center for Strategic Planning and Management of Medical and Biological Health Risks

Agina E.V.

Enikolopov Institute of Synthetic Polymer Materials of the Russian Academy of Sciences

Analysis of exhaled air composition using a portable electronic nose as a promising method for non-invasive rapid diagnosis of pulmonary tuberculosis

Authors:

Poimanova E.Yu., Abramov A.A., Poimanov V.D., Trul A.A., Boiko Ya.Yu., Ushakova N.B., Shipulin G.A., Yudin S.M., Agina E.V.

More about the authors

Journal: Laboratory Service. 2024;13(4): 12‑20

Read: 979 times


To cite this article:

Poimanova EYu, Abramov AA, Poimanov VD, et al. . Analysis of exhaled air composition using a portable electronic nose as a promising method for non-invasive rapid diagnosis of pulmonary tuberculosis. Laboratory Service. 2024;13(4):12‑20. (In Russ.)
https://doi.org/10.17116/labs20241304112

Recommended articles:
Issues of morphological diagnosis and pathogenesis of tube­rculosis. Russian Journal of Archive of Pathology. 2024;(5):81-93
Tube­rculous otitis media in an adolescent. Clinical case. Russian Bulletin of Otorhinolaryngology. 2024;(5):63-66
Giant peri­cranial sinus with exte­nsive occi­pital calvarium defect. Burdenko's Journal of Neurosurgery. 2024;(6):77-87
Comparison of models for prediction of spontaneous preterm birth. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):10-19
Features of differential diagnosis of onco­logical pathology at the outpatient stage. Russian Journal of Preventive Medi­cine. 2025;(2):93-95
5q spinal muscular atro­phy in adults. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(3):142-147

References:

  1. Evidence-based respiratory medicine. Ed. by Gibson PG, Abramson M, et al. Oxford: Blackwell; 2005:321-608. 
  2. Kufakova GA, Ovsyankina ES. Faktory riska razvitiya zabolevaniya tuberkulezom u detej i podrostkov iz sotsial’no-dezadaptirovannykh grupp naseleniya. Bol’shoj tselevoj zhurnal o tuberkuleze. 1998;1. (In Russ.).
  3. Shamanova LV, Maslauskene TP. Influence of various risk factors on morbidity with tuberculosis. Sibirskij meditsinskij zhurnal. 2011;6(105):28-30. (In Russ.).
  4. Happaerts M, Lorent N, André E. Exploring the use of exhaled breath as a diagnostic tool for pulmonary TB. Int J Tuberc Lung Dis. 2024;28(7):317-321. 
  5. Badola M, Agrawal A, Roy D, Sinha R, Goyal A, Jeet N. Volatile Organic Compound Identification-Based Tuberculosis Screening among TB Suspects: A Diagnostic Accuracy Study. Adv Respir Med. 2023;91(4):301-309. 
  6. Nawrath T, Mgode GF, Weetjens B, et al. The volatiles of pathogenic and non-pathogenic mycobacteria and related bacteria. Beilstein J Org Chem. 2012;8:290-299. 
  7. Nicol MP, Gnanashanmugam D, Browning R, Click ES, Cuevas LE, Detjen A, et al. A blueprint to address research gaps in the development of biomarkers for pediatric tuberculosis. Clin Infect Dis. 2015;61(Suppl. 3):S164-72. 
  8. Bijker EM, Smith JP, Mchembere W, et al. Exhaled breath analysis: A promising triage test for tuberculosis in young children. Tuberculosis. 2024;149:102566.
  9. Zetola NM, Modongo C, Matsiri O, et al. Diagnosis of pulmonary tuberculosis and assessment of treatment response through analyses of volatile compound patterns in exhaled breath samples. Journal of Infection. 2017;74:367-376. 
  10. Buma AIG, Muller M, de Vries R, et al. eNose analysis for early immunotherapy response monitoring in non-small cell lung cancer. Lung Cancer. 2021;160:36-43. 
  11. Phillips M, Cataneo RN, Condos R, Gerald A, et al. Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis. 2007;87:44-52. 
  12. Phillips M, Basa-Dalay V, Jaime B, et al. Point-of-care breath test for biomarkers of active pulmonary tuberculosis. Tuberculosis. 2012; 92:314-320. 
  13. Mule NM, Patil DD, Kau M. A comprehensive survey on investigation techniques of exhaled breath (EB) for diagnosis of diseases in human body. Informatics in Medicine Unlocked. 2021;26:100715.
  14. Lourenço C, Turner C. Breath Analysis in Disease Diagnosis: Methodological Considerations and Applications. Metabolites. 2014;4:465-498. 
  15. Yegorov S, Kadyrova I, Korshukov I, Sultanbekova A, et al, Application of MALDI-TOF MS and machine learning for the detection of SARS-CoV-2 and non-SARS-CoV-2 respiratory infections. Microbiol Spectr. 2024;12:04068-23. 
  16. Hahgighi F, Talebpour Z, Sanati-Nezhad A. Through the years with on-a-chip gas chromatography: a review. Lab Chip. 2015; 15:2559-657. 
  17. Moor CC, Oppenheimer JC, Nakshbandi G, et al Exhaled breath analysis by use of eNose technology: a novel diagnostic tool for interstitial lung disease. Eur Respir J. 2021;57:2002-2042 
  18. Wijbenga N, Hoek RAS, Mathot BJ, Seghers L, Moor CC, et al. Diagnostic performance of electronic nose technology in chronic lung allograft dysfunction. J Heart Lung Transplant. 2023;42: 236-245. 
  19. Rock F, Barsan N, Weimar U. Electronic nose: current status and future trends. Chem Rev. 2008;108(2):705-25. 
  20. Leopold JH, Bos LD, Sterk PJ, Schultz MJ, et al. Comparison of classification methods in breath analysis by electronic nose. J Breath Res. 2015;9(4):046002.
  21. Kaloumenou M, Skotadis E, Lagopati N, et al. Breath Analysis: A Promising Tool for Disease Diagnosis — The Role of Sensors. Sensors. 2022; 22:1238.
  22. Fend R, Kolk AH, Bessant C, et al. Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum. J Clin Microbiol. 2006;44(6):2039-45. 
  23. Nakhleh MK, Jeries R, Gharra A, et al. Detecting active pulmonary tuberculosis with a breath test using nanomaterial-based sensors. Eur Respir J. 2014;43(5):1522.
  24. Bukreeva EB, Bulanova AA, Nikiforova OYu, et al. Diagnosis of community-acquired pneumonia and pulmonary tuberculosis by means of breath analysis. Sovremennye problemy nauki i obrazovaniya. 2016;6:27. (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.