The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Bofanova N.S.

Penza State University

Eliseeva A.R.

Penza State University

Onchina V.S.

Penza State University

Modern principles of therapy for patients with spinal muscular atrophy

Authors:

Bofanova N.S., Eliseeva A.R., Onchina V.S.

More about the authors

Read: 3128 times


To cite this article:

Bofanova NS, Eliseeva AR, Onchina VS. Modern principles of therapy for patients with spinal muscular atrophy. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(3):34‑40. (In Russ.)
https://doi.org/10.17116/jnevro202312303134

Recommended articles:
5q spinal muscular atro­phy in adults. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(3):142-147
Early diagnosis and effe­ctive therapy of diabetic poly­neuropathy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(5):62-68
To the Question of Metronidazole Effe­ctiveness in Rosa­cea Therapy. Russian Journal of Clinical Dermatology and Vene­reology. 2024;(6):740-743

References:

  1. Seliverstov YuA, Klyushnikov SS, Illarioshkin SN. Spinal’nye myshechnye atrofii: ponyatie, differentsial’naya diagnostika, perspektivy lecheniya. Nervnye Bolezni. 2015;3:9-17. (In Russ.). https://www.atmosphere-ph.ru/modules/Magazines/articles/nervo/NB_3_2015_09.pdf
  2. Sugarman EA, Nagan N, Zhu H, et al. Pan-ethnic carrier screening and prenatal diagnosis for spinal muscular atrophy: clinical laboratory analysis of >72,400 specimens. European Journal of Human Genetics. 2012;20(1):27-32.  https://doi.org/10.1038/ejhg.2011.134
  3. Kolb SJ, Kissel JT. Spinal Muscular Atrophy. Neurologic Clinics. 2015;33(4):831-846.  https://doi.org/10.1016/j.ncl.2015.07.004
  4. Swoboda KJ, Prior TW, Scott CB, et al. Natural history of denervation in SMA: relation to age, SMN2 copy number, and function. Annals of Neurology. 2005;57(5):704-712.  https://doi.org/10.1002/ana.20473
  5. Calucho M, Bernal S, Alías L, et al. Correlation between SMA type and SMN2 copy number revisited: An analysis of 625 unrelated Spanish patients and a compilation of 2834 reported cases. Neuromuscular Disorders. 2018;28(3):208-215.  https://doi.org/10.1016/j.nmd.2018.01.003
  6. Finkel RS, McDermott MP, Kaufmann P, et al. Observational study of spinal muscular atrophy type I and implications for clinical trials. Neurology. 2014;83(9):810-817.  https://doi.org/10.1212/WNL.0000000000000741
  7. Kolb SJ, Coffey CS, Yankey JW, et al. Natural history of infantile-onset spinal muscular atrophy. Annals of Neurology. 2017;82(6):883-891.  https://doi.org/10.1002/ana.25101
  8. Arnold ES, Fischbeck KH. Spinal muscular atrophy. Handbook of Clinical Neurology. 2018;148:591-601.  https://doi.org/10.1016/B978-0-444-64076-5.00038-7
  9. Munsat TL, Davies KE. International SMA consortium meeting. (26-28 June 1992, Bonn, Germany). Neuromuscular Disorders. 1992;2(5-6):423-428.  https://doi.org/10.1016/s0960-8966(06)80015-5
  10. Dubowitz V. Very severe spinal muscular atrophy (SMA type 0): an expanding clinical phenotype. European Journal of Paediatric Neurology. 1999;3(2):49-51. 
  11. Zerres K, Rudnik-Schöneborn S, Forkert R, Wirth B. Genetic basis of adult-onset spinal muscular atrophy. Lancet. 1995;346(8983):1162. https://doi.org/10.1016/s0140-6736(95)91835-3
  12. D’Amico A, Mercuri E, Tiziano FD, Bertini E. Spinal muscular atrophy. Orphanet Journal of Rare Diseases. 2011;6:71.  https://doi.org/10.1186/1750-1172-6-71
  13. Oskoui M, Levy G, Garland CJ, et al. The changing natural history of spinal muscular atrophy type 1. Neurology. 2007;69(20):1931-1936. https://doi.org/10.1212/01.wnl.0000290830.40544.b9
  14. Bofanova NS, Masaeva RR, Verbitskaya OS, et al. Chronic pain in the 11th revision of the International Classification of Diseases. Russian Journal of Pain. 2021;19(1):36-39. (In Russ.). https://doi.org/10.17116/pain20211901136
  15. Lefebvre S, Bürglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell. 1995;80(1):155-165.  https://doi.org/10.1016/0092-8674(95)90460-3
  16. Talbot K, Tizzano EF. The clinical landscape for SMA in a new therapeutic era. Gene Therapy. 2017;24(9):529-533.  https://doi.org/10.1038/gt.2017.52
  17. Mercuri E, Finkel RS, Muntoni F, et al. Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscular Disorders. 2018;28(2):103-115.  https://doi.org/10.1016/j.nmd.2017.11.005
  18. Finkel RS, Mercuri E, Meyer OH, et al. Diagnosis and management of spinal muscular atrophy: Part 2: Pulmonary and acute care; medications, supplements and immunizations; other organ systems; and ethics. Neuromuscular Disorders. 2018;28(3):197-207.  https://doi.org/10.1016/j.nmd.2017.11.004
  19. Hardart MK, Burns JP, Truog RD. Respiratory support in spinal muscular atrophy type I: a survey of physician practices and attitudes. Pediatrics. 2002;110(2 Pt 1):e24.  https://doi.org/10.1542/peds.110.2.e24
  20. Bofanova NS, Tychkov AYu, Dyatlov AV, et al. Virtual reality technology as a promising direction in the treatment of postoperative and posttraumatic pain. Russian Journal of Pain. 2022;20(2):68-72. (In Russ.) https://doi.org/10.17116/pain20222002168
  21. Mercuri E, Finkel R, Montes J, et al. Patterns of disease progression in type 2 and 3 SMA: Implications for clinical trials. Neuromuscular Disorders. 2016;26(2):126-131.  https://doi.org/10.1016/j.nmd.2015.10.006
  22. Wijngaarde CA, Brink RC, de Kort FAS, et al. Natural course of scoliosis and lifetime risk of scoliosis surgery in spinal muscular atrophy. Neurology. 2019;93(2):149-158.  https://doi.org/10.1212/WNL.0000000000007742
  23. Holt JB, Dolan LA, Weinstein SL. Outcomes of Primary Posterior Spinal Fusion for Scoliosis in Spinal Muscular Atrophy: Clinical, Radiographic, and Pulmonary Outcomes and Complications. Journal of Pediatric Orthopedics. 2017;37(8):505-511.  https://doi.org/10.1097/BPO.0000000000001049
  24. Chou SH, Lin GT, Shen PC, et al. The effect of scoliosis surgery on pulmonary function in spinal muscular atrophy type II patients. Europen Spine Journal. 2017;26(6):1721-1731. https://doi.org/10.1007/s00586-016-4828-2
  25. Poruk KE, Davis RH, Smart AL, et al. Observational study of caloric and nutrient intake, bone density, and body composition in infants and children with spinal muscular atrophy type I. Neuromuscular Disorders. 2012;22(11):966-973.  https://doi.org/10.1016/j.nmd.2012.04.008
  26. Shababi M, Lorson CL, Rudnik-Schöneborn SS. Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease. Journal of Anatomy. 2014;224(1):15-28.  https://doi.org/10.1111/joa.12083
  27. Hamilton G, Gillingwater TH. Spinal muscular atrophy: going beyond the motor neuron. Trends in Molecular Medicine. 2013;19(1):40-50.  https://doi.org/10.1016/j.molmed.2012.11.002
  28. Wijngaarde CA, Blank AC, Stam M, et al. Cardiac pathology in spinal muscular atrophy: a systematic review. Orphanet Journal of Rare Diseases. 2017;12(1):67.  https://doi.org/10.1186/s13023-017-0613-5
  29. Grotto S, Cuisset JM, Marret S, et al. Type 0 Spinal Muscular Atrophy: Further Delineation of Prenatal and Postnatal Features in 16 Patients. Journal of Neuromuscular Disorders. 2016;3(4):487-495.  https://doi.org/10.3233/JND-160177
  30. Rudnik-Schöneborn S, Heller R, Berg C, et al. Congenital heart disease is a feature of severe infantile spinal muscular atrophy. Journal of Medical Genetics. 2008;45(10):635-638.  https://doi.org/10.1136/jmg.2008.057950
  31. Kim JK, Jha NN, Feng Z, et al. Muscle-specific SMN reduction reveals motor neuron-independent disease in spinal muscular atrophy models. Journal of Clinical Investigation. 2020;130(3):1271-1287. https://doi.org/10.1172/JCI131989
  32. Hua Y, Vickers TA, Okunola HL, et al. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. The American Journal of Human Genetics. 2008;82(4):834-848.  https://doi.org/10.1016/j.ajhg.2008.01.014
  33. Gidaro T, Servais L. Nusinersen treatment of spinal muscular atrophy: current knowledge and existing gaps. Developmental Medicine & Child Neurology. 2019;61(1):19-24.  https://doi.org/10.1111/dmcn.14027
  34. Porensky PN, Mitrpant C, McGovern VL, et al. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Human Molecular Genetics. 2012;21(7):1625-1638. https://doi.org/10.1093/hmg/ddr600
  35. Chiriboga CA, Swoboda KJ, Darras BT, et al. Results from a phase 1 study of nusinersen (ISIS-SMN(Rx)) in children with spinal muscular atrophy. Neurology. 2016;86(10):890-897.  https://doi.org/10.1212/WNL.0000000000002445
  36. Finkel RS, Mercuri E, Darras BT, et al. Nusinersen versus Sham Control in Infantile-Onset Spinal Muscular Atrophy. The New England Journal of Medicine. 2017;377(18):1723-1732. https://doi.org/10.1056/NEJMoa1702752
  37. Finkel RS, Chiriboga CA, Vajsar J, et al. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet. 2016;388(10063):3017-3026. https://doi.org/10.1016/S0140-6736(16)31408-8
  38. De Vivo DC, Bertini E, Swoboda KJ, et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscular Disorders. 2019;29(11):842-856.  https://doi.org/10.1016/j.nmd.2019.09.007
  39. Mercuri E, Darras BT, Chiriboga CA, et al. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. The New England Journal of Medicine. 2018;378(7):625-635.  https://doi.org/10.1056/NEJMoa1710504
  40. Montes J, Dunaway Young S, Mazzone ES, et al. Nusinersen improves walking distance and reduces fatigue in later-onset spinal muscular atrophy. Muscle Nerve. 2019;60(4):409-414.  https://doi.org/10.1002/mus.26633
  41. Darras BT, Chiriboga CA, Iannaccone ST, et al. Nusinersen in later-onset spinal muscular atrophy: Long-term results from the phase 1/2 studies. Neurology. 2019;92(21):2492-2506. https://doi.org/10.1212/WNL.0000000000007527
  42. Neil EE, Bisaccia EK. Nusinersen: A Novel Antisense Oligonucleotide for the Treatment of Spinal Muscular Atrophy. The Journal of Pediatric Pharmacology and Therapeutics. 2019;24(3):194-203.  https://doi.org/10.5863/1551-6776-24.3.194
  43. Kletzl H, Marquet A, Günther A, et al. The oral splicing modifier RG7800 increases full length survival of motor neuron 2 mRNA and survival of motor neuron protein: Results from trials in healthy adults and patients with spinal muscular atrophy. Neuromuscular Disorders. 2019;29(1):21-29.  https://doi.org/10.1016/j.nmd.2018.10.001
  44. Ratni H, Ebeling M, Baird J, et al. Discovery of Risdiplam, a Selective Survival of Motor Neuron-2 (SMN2) Gene Splicing Modifier for the Treatment of Spinal Muscular Atrophy (SMA). Journal of Medicinal Chemistry. 2018;61(15):6501-6517. https://doi.org/10.1021/acs.jmedchem.8b00741
  45. Cheung AK, Hurley B, Kerrigan R, et al. Discovery of Small Molecule Splicing Modulators of Survival Motor Neuron-2 (SMN2) for the Treatment of Spinal Muscular Atrophy (SMA). Journal of Medicinal Chemistry. 2018;61(24):11021-11036. https://doi.org/10.1021/acs.jmedchem.8b01291
  46. Chen TH. New and Developing Therapies in Spinal Muscular Atrophy: From Genotype to Phenotype to Treatment and Where Do We Stand. International Journal of Molecular Sciences. 2020;21(9):3297. https://doi.org/10.3390/ijms21093297
  47. High KA, Roncarolo MG. Gene Therapy. The New England Journal of Medicine. 2019;381(5):455-464.  https://doi.org/10.1056/NEJMra1706910
  48. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nature Reviews Drug Discovery. 2019;18(5):358-378.  https://doi.org/10.1038/s41573-019-0012-9
  49. Naso MF, Tomkowicz B, Perry WL 3rd, Strohl WR. Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs. 2017;31(4):317-334.  https://doi.org/10.1007/s40259-017-0234-5
  50. Shirley JL, de Jong YP, Terhorst C, Herzog RW. Immune Responses to Viral Gene Therapy Vectors. Molecular Therapy. 2020;28(3):709-722.  https://doi.org/10.1016/j.ymthe.2020.01.001
  51. Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nature Reviews Genetics. 2020;21(4):255-272.  https://doi.org/10.1038/s41576-019-0205-4
  52. Lisowski L, Tay SS, Alexander IE. Adeno-associated virus serotypes for gene therapeutics. Current Opinion in Pharmacology. 2015;24:59-67.  https://doi.org/10.1016/j.coph.2015.07.006
  53. Mendell JR, Al-Zaidy S, Shell R, et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. The New England Journal of Medicine. 2017;377(18):1713-1722. https://doi.org/10.1056/NEJMoa1706198
  54. Al-Zaidy S, Pickard AS, Kotha K, et al. Health outcomes in spinal muscular atrophy type 1 following AVXS-101 gene replacement therapy. Pediatric Pulmonology. 2019;54(2):179-185.  https://doi.org/10.1002/ppul.24203
  55. Waldrop MA, Karingada C, Storey MA, et al. Gene Therapy for Spinal Muscular Atrophy: Safety and Early Outcomes. Pediatrics. 2020;146(3):e20200729. https://doi.org/10.1542/peds.2020-0729
  56. Petry H, Brooks A, Orme A, et al. Effect of viral dose on neutralizing antibody response and transgene expression after AAV1 vector re-administration in mice. Gene Therapy. 2008;15(1):54-60.  https://doi.org/10.1038/sj.gt.3303037
  57. Corti M, Cleaver B, Clément N, et al. Evaluation of Readministration of a Recombinant Adeno-Associated Virus Vector Expressing Acid Alpha-Glucosidase in Pompe Disease: Preclinical to Clinical Planning. Human Gene Therapy. Clinical Development. 2015;26(3):185-193.  https://doi.org/10.1089/humc.2015.068
  58. Meliani A, Boisgerault F, Hardet R, et al. Antigen-selective modulation of AAV immunogenicity with tolerogenic rapamycin nanoparticles enables successful vector re-administration. Nature Communications. 2018;9(1):4098. https://doi.org/10.1038/s41467-018-06621-3
  59. Hinderer C, Katz N, Buza EL, et al. Severe Toxicity in Nonhuman Primates and Piglets Following High-Dose Intravenous Administration of an Adeno-Associated Virus Vector Expressing Human SMN. Human Gene Therapy. Clinical Development. 2018;29(3):285-298.  https://doi.org/10.1089/hum.2018.015
  60. Wadman RI, Stam M, Jansen MD, et al. A Comparative Study of SMN Protein and mRNA in Blood and Fibroblasts in Patients with Spinal Muscular Atrophy and Healthy Controls. PLoS One. 2016;11(11):e0167087. https://doi.org/10.1371/journal.pone.0167087
  61. Ramos DM, d’Ydewalle C, Gabbeta V, et al. Age-dependent SMN expression in disease-relevant tissue and implications for SMA treatment. Journal of Clinical Investigation. 2019;129(11):4817-4831. https://doi.org/10.1172/JCI124120
  62. Mendell JR, Al-Zaidy SA, Lehman KJ, et al. Five-Year Extension Results of the Phase 1 START Trial of Onasemnogene Abeparvovec in Spinal Muscular Atrophy. JAMA Neurology. 2021;78(7):834-841.  https://doi.org/10.1001/jamaneurol.2021.1272
  63. Dabbous O, Maru B, Jansen JP, et al. Survival, Motor Function, and Motor Milestones: Comparison of AVXS-101 Relative to Nusinersen for the Treatment of Infants with Spinal Muscular Atrophy Type 1. Advances in Therapy. 2019;36(5):1164-1176. https://doi.org/10.1007/s12325-019-00923-8
  64. Lee BH, Collins E, Lewis L, et al. Combination therapy with nusinersen and AVXS-101 in SMA type 1. Neurology. 2019;93(14):640-641.  https://doi.org/10.1212/WNL.0000000000008207
  65. Harada Y, Rao VK, Arya K, et al. Combination molecular therapies for type 1 spinal muscular atrophy. Muscle Nerve. 2020;62(4):550-554.  https://doi.org/10.1002/mus.27034
  66. Bharucha-Goebel D, Kaufmann P. Treatment Advances in Spinal Muscular Atrophy. Current Neurology and Neuroscience Reports. 2017;17(11):91.  https://doi.org/10.1007/s11910-017-0798-y
  67. Farrar MA, Park SB, Vucic S, et al. Emerging therapies and challenges in spinal muscular atrophy. Annals of Neurology. 2017;81(3):355-368.  https://doi.org/10.1002/ana.24864
  68. Waldrop MA, Kolb SJ. Current Treatment Options in Neurology-SMA Therapeutics. Current Treatment Options in Neurology. 2019;21(6):25.  https://doi.org/10.1007/s11940-019-0568-z
  69. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83-90.  https://doi.org/10.1038/387083a0
  70. Amthor H, Macharia R, Navarrete R, et al. Lack of myostatin results in excessive muscle growth but impaired force generation [published correction appears in Proc Natl Acad Sci USA. 2007;104(10):4240]. Proceedings of the National Academy of Sciences. 2007;104(6):1835-1840. https://doi.org/10.1073/pnas.0604893104
  71. Pirruccello-Straub M, Jackson J, Wawersik S, et al. Blocking extracellular activation of myostatin as a strategy for treating muscle wasting. Scientific Reports. 2018;8(1):2292. https://doi.org/10.1038/s41598-018-20524-9
  72. Long KK, O’Shea KM, Khairallah RJ, et al. Specific inhibition of myostatin activation is beneficial in mouse models of SMA therapy. Human Molecular Genetics. 2019;28(7):1076-1089. https://doi.org/10.1093/hmg/ddy382
  73. Russell AJ, Hartman JJ, Hinken AC, et al. Activation of fast skeletal muscle troponin as a potential therapeutic approach for treating neuromuscular diseases. Nature Medicine. 2012;18(3):452-455.  https://doi.org/10.1038/nm.2618
  74. Hwee DT, Kennedy AR, Hartman JJ, et al. The small-molecule fast skeletal troponin activator, CK-2127107, improves exercise tolerance in a rat model of heart failure. Journal of Pharmacology and Experimental Therapeutics. 2015;353(1):159-168.  https://doi.org/10.1124/jpet.114.222224
  75. Andrews JA, Miller TM, Vijayakumar V, et al. CK-2127107 amplifies skeletal muscle response to nerve activation in humans. Muscle Nerve. 2018;57(5):729-734.  https://doi.org/10.1002/mus.26017
  76. Engel AG, Shen XM, Selcen D, Sine SM. Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment [published correction appears in Lancet Neurol. 2015;14(5):461]. Lancet Neurology. 2015;14(4):420-434.  https://doi.org/10.1016/S1474-4422(14)70201-7
  77. Pera MC, Luigetti M, Sivo S, et al. Does albuterol have an effect on neuromuscular junction dysfunction in spinal muscular atrophy. Neuromuscular Disorders. 2018;28(10):863-864.  https://doi.org/10.1016/j.nmd.2018.07.013
  78. Tiziano FD, Lomastro R, Abiusi E, et al. Longitudinal evaluation of SMN levels as biomarker for spinal muscular atrophy: Results of a phase IIb double-blind study of salbutamol. Journal of Medical Genetics. 2019;56:293-300.  https://doi.org/10.1136/jmedgenet-2018-105482
  79. Messina S, Sframeli M. New Treatments in Spinal Muscular Atrophy: Positive Results and New Challenges. Journal of Clinical Medicine. 2020;9(7):2222. https://doi.org/10.3390/jcm9072222

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.