The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Senkevich K.A.

Institute of Experimental Medicine, St. Petersburg, Russia;
Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia;
National Research Center «Kurchatov Institute» Konstantinov Petersburg Nuclear Physics Institute, St. Petersburg, Russia

Miliukhina I.V.

FGBU "Nauchno-issledovatel'skiĭ institut ksperimental'noĭ meditsiny" Severo-Zapadnogo otdeleniia RAMN, Sankt-Peterburg

Pchelina S.N.

Sankt-Peterburgskiĭ institut iadernoĭ fiziki im. B.P. Konstantinova RAN;
Sankt-Peterburgskiĭ gosudarstvennyĭ meditsinskiĭ universitet im. akad. I.P. Pavlova Roszdrava

The genetic predictors of cognitive impairment in Parkinson’s disease

Authors:

Senkevich K.A., Miliukhina I.V., Pchelina S.N.

More about the authors

Read: 1604 times


To cite this article:

Senkevich KA, Miliukhina IV, Pchelina SN. The genetic predictors of cognitive impairment in Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2018;118(8):109‑117. (In Russ.)
https://doi.org/10.17116/jnevro2018118081109

Recommended articles:
Diagnosis and treatment approaches for sialorrhea in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(10):29-34
Neurochemical mechanisms of tremor in Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):64-72
Cognitive impairment in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):81-90
Bladder dysfunction in patients with stages I—III of Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):91-99
Como­rbidity of depression and deme­ntia: epidemiological, biological and therapeutic aspe­cts. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):113-121
Cognitive impairment in bili­nguals with neurological diseases. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):26-29

References:

  1. Braak H, Tredici K, Rüb U, de Vos R, Jansen Steur E, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging. 2003;24(2):197-211. https://doi.org/10.1016/s0197-4580(02)00065-9
  2. Aarsland D, Andersen K, Larsen J, Lolk A, Nielsen H, Kragh-Sorensen P. Risk of dementia in Parkinson’s disease: A community-based, prospective study. Neurology. 2001;56(6):730-736. https://doi.org/10.1212/wnl.56.6.730
  3. Pigott K, Rick J, Xie S, Hurtig H, Chen-Plotkin A, Duda J, Morley J, Chahine L, Dahodwala N, Akhtar R, Siderowf A, Trojanowski J, Weintraub D. Longitudinal study of normal cognition in Parkinson disease. Neurology. 2015;85(15):1276-1282. https://doi.org/10.1212/wnl.0000000000002001
  4. Pedersen K, Larsen J, Tysnes O, Alves G. Natural course of mild cognitive impairment in Parkinson disease. Neurology. 2017;88(8):767-774. https://doi.org/10.1212/wnl.0000000000003634
  5. Hernández F, Ávila J. Commentary: Genome-wide association study identifies 74 loci associated with educational attainment. Frontiers in Molecular Neuroscience. 2017;10. https://doi.org/10.3389/fnmol.2017.00023
  6. Davies G, Armstrong N, Bis J, Bressler J, Chouraki V, Giddaluru S, Hofer E, Ibrahim-Verbaas C, Kirin M, Lahti J, van der Lee S, Le Hellard S, Liu T, Marioni R, Oldmeadow C, Postmus I, Smith A, Smith J, Thalamuthu A, Thomson R, Vitart V, Wang J, Yu L, Zgaga L, Zhao W, Boxall R, Harris S, Hill W, Liewald D, Luciano M, Adams H, Ames D, Amin N, Amouyel P, Assareh A, Au R, Becker J, Beiser A, Berr C, Bertram L, Boerwinkle E, Buckley B, Campbell H, Corley J, De Jager P, Dufouil C, Eriksson J, Espeseth T, Faul J, Ford I, Scotland G, Gottesman R, Griswold M, Gudnason V, Harris T, Heiss G, Hofman A, Holliday E, Huffman J, Kardia S, Kochan N, Knopman D, Kwok J, Lambert J, Lee T, Li G, Li S, Loitfelder M, Lopez O, Lundervold A, Lundqvist A, Mather K, Mirza S, Nyberg L, Oostra B, Palotie A, Papenberg G, Pattie A, Petrovic K, Polasek O, Psaty B, Redmond P, Reppermund S, Rotter J, Schmidt H, Schuur M, Schofield P, Scott R, Steen V, Stott D, van Swieten J, Taylor K, Trollor J, Trompet S, Uitterlinden A, Weinstein G, Widen E, Windham B, Jukema J, Wright A, Wright M, Yang Q, Amieva H, Attia J, Bennett D, Brodaty H, de Craen A, Hayward C, Ikram M, Lindenberger U, Nilsson L, Porteous D, Räikkönen K, Reinvang I, Rudan I, Sachdev P, Schmidt R, Schofield P, Srikanth V, Starr J, Turner S, Weir D, Wilson J, van Duijn C, Launer L, Fitzpatrick A, Seshadri S, Mosley T, Deary I. Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (n=53 949). Molecular Psychiatry. 2015;20(2):183-192. https://doi.org/10.1038/mp.2014.188
  7. Levin OS, Batukaeva LA, Smolentseva IG Diagnosis and treatment of dementia in Parkinson’s disease. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova. 2008;108(6):85-91. (In Russ.)
  8. Guella I, Evans D, Szu-Tu C, Nosova E, Bortnick S, Goldman J, Dalrymple-Alford J, Geurtsen G, Litvan I, Ross O, Middleton L, Parkkinen L, Farrer M. α-synuclein genetic variability: A biomarker for dementia in Parkinson disease. Annals of Neurology. 2016;79(6):991-999. https://doi.org/10.1002/ana.24664
  9. Farrer M, Kachergus J, Forno L, Lincoln S, Wang D, Hulihan M, Maraganore D, Gwinn-Hardy K, Wszolek Z, Dickson D, Langston J. Comparison of kindreds with parkinsonism and a-synuclein genomic multiplications. Annals of Neurology. 2004;55(2):174-179. https://doi.org/10.1002/ana.10846
  10. Olgiati S, Thomas A, Quadri M, Breedveld G, Graafland J, Eussen H, Douben H, de Klein A, Onofrj M, Bonifati V. Early-onset parkinsonism caused by alpha-synuclein gene triplication: Clinical and genetic findings in a novel family. Parkinsonism & Related Disorders. 2015;21(8):981-986. https://doi.org/10.1016/j.parkreldis.2015.06.005
  11. Somme J, Gomez-Esteban J, Molano A, Tijero B, Lezcano E, Zarranz J. Initial neuropsychological impairments in patients with the E46K mutation of the α-synuclein gene (PARK 1). Journal of the Neurological Sciences. 2011;310(1-2):86-89. https://doi.org/10.1016/j.jns.2011.07.047
  12. Puschmann A. Monogenic Parkinson’s disease and parkinsonism: Clinical phenotypes and frequencies of known mutations. Parkinsonism & Related Disorders. 2013;19(4):407-415. https://doi.org/10.1016/j.parkreldis.2013.01.020
  13. Seidel K, Schöls L, Nuber S, Petrasch-Parwez E, Gierga K, Wszolek Z, Dickson D, Gai WP, Bornemann A, Riess O, Rami A, Den Dunnen WF, Deller T, Rüb U, Krüger R. First appraisal of brain pathology owing to A30P mutant alpha-synuclein. Annals of Neurology. 2010;67(5):684-689. https://doi.org/10.1002/ana.21966
  14. Wider C, Skipper L, Solida A, Brown L, Farrer M, Dickson D, Wszolek ZK, Vingerhoets FJ. Autosomal dominant dopa-responsive parkinsonism in a multigenerational Swiss family. Parkinsonism & Related Disorders. 2008;14(6):465-470. https://doi.org/10.1016/j.parkreldis.2007.11.013
  15. Lesage S, Condroyer C, Klebe S, Honoré A, Tison F, Brefel-Courbon C, Dürr A, Brice A; French Parkinson’s Disease Genetics Study Group. Identification of VPS35 mutations replicated in French families with Parkinson disease. Neurology. 2012;78(18):1449-1450. https://doi.org/10.1212/wnl.0b013e318253d5f2
  16. Yang X, Xu Y. Mutations in the ATP13A2 Gene and Parkinsonism: A Preliminary Review. BioMed Research International. 2014;2014:1-9. https://doi.org/10.1155/2014/371256
  17. Park J, Blair N, Sue C. The role of ATP13A2 in Parkinson’s disease: Clinical phenotypes and molecular mechanisms. Movement Disorders. 2015;30(6):770-779. https://doi.org/10.1002/mds.26243
  18. Konno T, Ross O, Puschmann A, Dickson D, Wszolek Z. Autosomal dominant Parkinson’s disease caused by SNCA duplications. Parkinsonism & Related Disorders. 2016;22:1-6. https://doi.org/10.1016/j.parkreldis.2015.09.007
  19. Poulopoulos M, Levy O, Alcalay R. The neuropathology of genetic Parkinson’s disease. Movement Disorders. 2012;27(7):831-842. https://doi.org/10.1002/mds.24962
  20. Chartier-Harlin MC, Kachergus J, Roumier C, Mouroux V, Douay X, Lincoln S, Levecque C, Larvor L, Andrieux J, Hulihan M, Waucquier N, Defebvre L, Amouyel P, Farrer M, Destée A. α-synuclein locus duplication as a cause of familial Parkinson’s disease. The Lancet. 2004;364(9440):1167-1169. https://doi.org/10.1016/s0140-6736(04)17103-1
  21. Pchelina SN, Ivanova ON, Emel’ianov AK, Iakimovskiĭ AF. Clinical features of LRRK2-associated Parkinson’s disease. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova. 2011;111(12):56-62. (In Russ.)
  22. Marras C, Schüle B, Munhoz RP, Rogaeva E, Langston JW, Kasten M, Meaney C, Klein C, Wadia PM, Lim SY, Chuang RS, Zadikof C, Steeves T, Prakash KM, de Bie RM, Adeli G, Thomsen T, Johansen KK, Teive HA, Asante A, Reginold W, Lang AE. Phenotype in parkinsonian and nonparkinsonian LRRK2 G2019S mutation carriers. Neurology. 2011;77(4):325-333. https://doi.org/10.1212/wnl.0b013e318227042d
  23. Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S, Brice A, Aasly J, Zabetian CP, Goldwurm S, Ferreira JJ, Tolosa E, Kay DM, Klein C, Williams DR, Marras C, Lang AE, Wszolek ZK, Berciano J, Schapira AH, Lynch T, Bhatia KP, Gasser T, Lees AJ, Wood NW; International LRRK2 Consortium. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. The Lancet Neurology. 2008;7(7):583-590. https://doi.org/10.1016/s1474-4422(08)70117-0
  24. Srivatsal S, Cholerton B, Leverenz JB, Wszolek ZK, Uitti RJ, Dickson DW, Weintraub D, Trojanowski JQ, Van Deerlin VM, Quinn JF, Chung KA, Peterson AL, Factor SA, Wood-Siverio C, Goldman JG, Stebbins GT, Bernard B, Ritz B, Rausch R, Espay AJ, Revilla FJ, Devoto J, Rosenthal LS, Dawson TM, Albert MS, Mata IF, Hu SC, Montine KS, Johnson C, Montine TJ, Edwards KL, Zhang J, Zabetian CP. Cognitive profile of LRRK2-related Parkinson’s disease. Movement Disorders. 2015;30(5):728-733. https://doi.org/10.1002/mds.26161
  25. van de Warrenburg BP, Lammens M, Lücking CB, Denèfle P, Wesseling P, Booij J, Praamstra P, Quinn N, Brice A, Horstink MW.Clinical and pathologic abnormalities in a family with parkinsonism and parkin gene mutations. Neurology. 2001;56(4):555-557. https://doi.org/10.1212/wnl.56.4.555
  26. Steinlechner S, Stahlberg J, Völkel B, Djarmati A, Hagenah J, Hiller A, Hedrich K, König I, Klein C, Lencer R. Co-occurrence of affective and schizophrenia spectrum disorders with PINK1 mutations. Journal of Neurology, Neurosurgery & Psychiatry. 2006;78(5):532-535. https://doi.org/10.1136/jnnp.2006.105676
  27. Neil J, Glew R, Peters S. Familial Psychosis and Diverse Neurologic Abnormalities in Adult-Onset Gaucher’s Disease. Archives of Neurology. 1979;36(2):95-99. https://doi.org/10.1001/archneur.1979.00500380065007
  28. Emelyanov A, Boukina T, Yakimovskii A, Usenko T, Drosdova A, Zakharchuk A, Andoskin P, Dubina M, Schwarzman A, Pchelina S. Glucocerebrosidase gene mutations are associated with Parkinson’s disease in Russia. Movement Disorders. 2011;27(1):158-159. https://doi.org/10.1002/mds.23950
  29. Sidransky E, Lopez G. The link between the GBA gene and parkinsonism. The Lancet Neurology. 2012;11(11):986-998. https://doi.org/10.1016/s1474-4422(12)70190-4
  30. McNeill A, Duran R, Hughes D, Mehta A, Schapira A. A clinical and family history study of Parkinson’s disease in heterozygous glucocerebrosidase mutation carriers. Journal of Neurology, Neurosurgery & Psychiatry. 2012;83(8):853-854. https://doi.org/10.1136/jnnp-2012-302402
  31. McNeill A, Duran R, Proukakis C, Bras J, Hughes D, Mehta A, Hardy J, Wood NW, Schapira AH. Hyposmia and cognitive impairment in Gaucher disease patients and carriers. Movement Disorders. 2012;27(4):526-532. https://doi.org/10.1002/mds.24945
  32. Alcalay RN, Mejia-Santana H, Tang MX, Rakitin B, Rosado L, Ross B, Verbitsky M, Kisselev S, Louis ED, Comella CL, Colcher A, Jennings D, Nance MA, Bressman S, Scott WK, Tanner C, Mickel SF, Andrews HF, Waters CH, Fahn S, Cote LJ, Frucht SJ, Ford B, Rezak M, Novak K, Friedman JH, Pfeiffer R, Marsh L, Hiner B, Siderowf A, Ottman R, Clark LN, Marder KS, Caccappolo E. Self-report of cognitive impairment and mini-mental state examination performance in PRKN, LRRK2, and GBA carriers with early onset Parkinson’s disease. Journal of Clinical and Experimental Neuropsychology. 2010;32(7):775-779. https://doi.org/10.1080/13803390903521018
  33. Alcalay RN, Caccappolo E, Mejia-Santana H, Tang M-, Rosado L, Orbe Reilly M, Ruiz D, Ross B, Verbitsky M, Kisselev S, Louis E, Comella C, Colcher A, Jennings D, Nance M, Bressman S, Scott WK, Tanner C, Mickel S, Andrews H, Waters C, Fahn S, Cote L, Frucht S, Ford B, Rezak M, Novak K, Friedman JH, Pfeiffer R, Marsh L, Hiner B, Siderowf A, Payami H, Molho E, Factor S, Ottman R, Clark LN, Marder K. Cognitive performance of GBA mutation carriers with early-onset PD: The CORE-PD study. Neurology. 2012;78(18):1434-1440. https://doi.org/10.1212/wnl.0b013e318253d54b
  34. Brockmann K, Srulijes K, Hauser AK, Schulte C, Csoti I, Gasser T, Berg D. GBA-associated PD presents with nonmotor characteristics. Neurology. 2011;77(3):276-280. https://doi.org/10.1212/wnl.0b013e318225ab77
  35. Setó-Salvia N, Pagonabarraga J, Houlden H, Pascual-Sedano B, Dols-Icardo O, Tucci A, Paisán-Ruiz C, Campolongo A, Antón-Aguirre S, Martín I, Muñoz L, Bufill E, Vilageliu L, Grinberg D, Cozar M, Blesa R, Lleó A, Hardy J, Kulisevsky J, Clarimón J. Glucocerebrosidase mutations confer a greater risk of dementia during Parkinson’s disease course. Movement Disorders. 2011;27(3):393-399. https://doi.org/10.1002/mds.24045
  36. Chahine LM, Qiang J, Ashbridge E, Minger J, Yearout D, Horn S, Colcher A, Hurtig HI, Lee VM, Van Deerlin VM, Leverenz JB, Siderowf AD, Trojanowski JQ, Zabetian CP, Chen-Plotkin A. Clinical and Biochemical Differences in Patients Having Parkinson Disease With vs Without GBA Mutations. JAMA Neurology. 2013;70(7):852. https://doi.org/10.1001/jamaneurol.2013.1274
  37. Li Y, Sekine T, Funayama M, Li L, Yoshino H, Nishioka K, Tomiyama H, Hattori N. Clinicogenetic study of GBA mutations in patients with familial Parkinson’s disease. Neurobiology of Aging. 2014;35(4):935.e3-935.e8. https://doi.org/10.1016/j.neurobiolaging.2013.09.019
  38. Cilia R, Tunesi S, Marotta G, Cereda E, Siri C, Tesei S, Zecchinelli AL, Canesi M, Mariani CB, Meucci N, Sacilotto G, Zini M, Barichella M, Magnani C, Duga S, Asselta R, Soldà G, Seresini A, Seia M, Pezzoli G, Goldwurm S. Survival and dementia in GBA-associated Parkinson’s disease: The mutation matters. Annals of Neurology. 2016;80(5):662-673. https://doi.org/10.1002/ana.24777
  39. Kumar KR, Ramirez A, Göbel A, Kresojević N, Svetel M, Lohmann K, M Sue C, Rolfs A, Mazzulli JR, Alcalay RN, Krainc D, Klein C, Kostic V, Grünewald A. Glucocerebrosidase mutations in a Serbian Parkinson’s disease population. European Journal of Neurology. 2012;20(2):402-405. https://doi.org/10.1111/j.1468-1331.2012.03817.x
  40. Wang C, Cai Y, Gu Z, Ma J, Zheng Z, Tang BS, Xu Y, Zhou Y, Feng T, Wang T, Chen SD, Chan P; Chinese Parkinson Study Group. Clinical profiles of Parkinson’s disease associated with common leucine-rich repeat kinase 2 and glucocerebrosidase genetic variants in Chinese individuals. Neurobiology of Aging. 2014;35(3):725.e1-725.e6. https://doi.org/10.1016/j.neurobiolaging.2013.08.012
  41. Malec-Litwinowicz M, Rudzińska M, Szubiga M, Michalski M, Tomaszewski T, Szczudlik A. Cognitive impairment in carriers of glucocerebrosidase gene mutation in Parkinson disease patients. Neurologia i Neurochirurgia Polska. 2014;48(4):258-261. https://doi.org/10.1016/j.pjnns.2014.07.005
  42. Goker-Alpan O, Lopez G, Vithayathil J, Davis J, Hallett M, Sidransky E. The Spectrum of Parkinsonian Manifestations Associated With Glucocerebrosidase Mutations. Archives of Neurology. 2008;65(10). https://doi.org/10.1001/archneur.65.10.1353
  43. Brockmann K, Srulijes K, Pflederer S, Hauser AK, Schulte C, Maetzler W, Gasser T, Berg D. GBA-associated Parkinson’s disease: Reduced survival and more rapid progression in a prospective longitudinal study. Movement Disorders. 2014;30(3):407-411. https://doi.org/10.1002/mds.26071
  44. Oeda T, Umemura A, Mori Y, Tomita S, Kohsaka M, Park K, Inoue K, Fujimura H, Hasegawa H, Sugiyama H, Sawada H. Impact of glucocerebrosidase mutations on motor and nonmotor complications in Parkinson’s disease. Neurobiology of Aging. 2015;36(12):3306-3313. https://doi.org/10.1016/j.neurobiolaging.2015.08.027
  45. Mata IF, Leverenz JB, Weintraub D, Trojanowski JQ, Chen-Plotkin A, Van Deerlin VM, Ritz B, Rausch R, Factor SA, Wood-Siverio C, Quinn JF, Chung KA, Peterson-Hiller AL, Goldman JG, Stebbins GT, Bernard B, Espay AJ, Revilla FJ, Devoto J, Rosenthal LS, Dawson TM, Albert MS, Tsuang D, Huston H, Yearout D, Hu SC, Cholerton BA, Montine TJ, Edwards KL, Zabetian CP. GBA Variants are associated with a distinct pattern of cognitive deficits in Parkinson’s disease. Movement Disorders. 2015;31(1):95-102. https://doi.org/10.1002/mds.26359
  46. Davis MY, Johnson CO, Leverenz JB, Weintraub D, Trojanowski JQ, Chen-Plotkin A, Van Deerlin VM, Quinn JF, Chung KA, Peterson-Hiller AL, Rosenthal LS, Dawson TM, Albert MS, Goldman JG, Stebbins GT, Bernard B, Wszolek ZK, Ross OA, Dickson DW, Eidelberg D, Mattis PJ, Niethammer M, Yearout D, Hu SC, Cholerton BA, Smith M, Mata IF, Montine TJ, Edwards KL, Zabetian CP. Association of GBA Mutations and the E326K Polymorphism With Motor and Cognitive Progression in Parkinson Disease. JAMA Neurology. 2016;73(10):1217. https://doi.org/10.1001/jamaneurol.2016.2245
  47. Winder-Rhodes SE, Evans JR, Ban M, Mason SL, Williams-Gray CH, Foltynie T, Duran R, Mencacci NE, Sawcer SJ, Barker RA. Glucocerebrosidase mutations influence the natural history of Parkinson’s disease in a community-based incident cohort. Brain. 2013;136(2):392-399. https://doi.org/10.1093/brain/aws318
  48. Beavan M, McNeill A, Proukakis C, Hughes D, Mehta A, Schapira A. Evolution of Prodromal Clinical Markers of Parkinson Disease in a GBA Mutation—Positive Cohort. JAMA Neurology. 2015;72(2):201. https://doi.org/10.1001/jamaneurol.2014.2950
  49. Zokaei N, McNeill A, Proukakis C, Beavan M, Jarman P, Korlipara P, Hughes D, Mehta A, Hu MT, Schapira AH, Husain M. Visual short-term memory deficits associated with GBA mutation and Parkinson’s disease. Brain. 2014;137(8):2303-2311. https://doi.org/10.1093/brain/awu143
  50. Senkevich KA, Miliukhina IV, Beletskaia MV, Gracheva EV, Kudrevatykh AV, Nikolaev MA, Emelyanov AK, Kopytova AE, Timofeeva AA, Yakimovskiy AF, Pchelina SN. The clinical features of Parkinson’s disease in patients with mutations and polymorphic variants of GBA gene. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova 2017;117(10):81-86. (In Russ.)
  51. Creese B, Bell E, Johar I, Francis P, Ballard C, Aarsland D. Glucocerebrosidase mutations and neuropsychiatric phenotypes in Parkinson’s disease and Lewy body dementias: Review and meta-analyses. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics. 2018;177(2):232-241. https://doi.org/10.1002/ajmg.b.32549
  52. Myers A. The H1c haplotype at the MAPT locus is associated with Alzheimer’s disease. Human Molecular Genetics. 2005;14(16):2399-2404. https://doi.org/10.1093/hmg/ddi241
  53. Pittman A. Untangling the tau gene association with neurodegenerative disorders. Human Molecular Genetics. 2006;15(Review Issue 2):188-195. https://doi.org/10.1093/hmg/ddl190
  54. Das G, Misra A, Das S, Ray K, Ray J. Microtubule-associated protein tau (MAPT) influences the risk of Parkinson’s disease among Indians. Neuroscience Letters. 2009;460(1):16-20. https://doi.org/10.1016/j.neulet.2009.05.031
  55. Emelyanov A, Andoskin P, Yakimovskii A, Usenko T, Nuzhnyi E, Nikolaev M, Pchelina S. SNCA, LRRK2, MAPT polymorphisms and Parkinson’s disease in Russia. Parkinsonism & Related Disorders. 2013;19(11):1064-1065. https://doi.org/10.1016/j.parkreldis.2013.06.003
  56. Skipper L, Wilkes K, Toft M, Baker M, Lincoln S, Hulihan M, Ross OA, Hutton M, Aasly J, Farrer M. Linkage Disequilibrium and Association of MAPT H1 in Parkinson Disease. The American Journal of Human Genetics. 2004;75(4):669-677. https://doi.org/10.1086/424492
  57. Giasson B. Initiation and Synergistic Fibrillization of Tau and Alpha-Synuclein. Science. 2003;300(5619):636-640. https://doi.org/10.1126/science.1082324
  58. Goris A, Williams-Gray CH, Clark GR, Foltynie T, Lewis SJ, Brown J, Ban M, Spillantini MG, Compston A, Burn DJ, Chinnery PF, Barker RA, Sawcer SJ. Tau and α-synuclein in susceptibility to, and dementia in, Parkinson’s disease. Annals of Neurology. 2007;62(2):145-153. https://doi.org/10.1002/ana.21192
  59. Williams-Gray CH, Evans JR, Goris A, Foltynie T, Ban M, Robbins TW, Brayne C, Kolachana BS, Weinberger DR, Sawcer SJ, Barker RA. The distinct cognitive syndromes of Parkinson’s disease: 5 year follow-up of the CamPaIGN cohort. Brain. 2009;132(11):2958-2969. https://doi.org/10.1093/brain/awp245
  60. Williams-Gray CH, Mason SL, Evans JR, Foltynie T, Brayne C, Robbins TW, Barker RA. The CamPaIGN study of Parkinson’s disease: 10-year outlook in an incident population-based cohort. Journal of Neurology, Neurosurgery & Psychiatry. 2013;84(11):1258-1264. https://doi.org/10.1136/jnnp-2013-305277
  61. Setó-Salvia N, Clarimón J, Pagonabarraga J, Pascual-Sedano B, Campolongo A, Combarros O, Mateo JI, Regaña D, Martínez-Corral M, Marquié M, Alcolea D, Suárez-Calvet M, Molina-Porcel L, Dols O, Gómez-Isla T, Blesa R, Lleó A, Kulisevsky J. Dementia Risk in Parkinson Disease. Archives of Neurology. 2011;68(3). https://doi.org/10.1001/archneurol.2011.17
  62. Mata IF, Leverenz JB, Weintraub D, Trojanowski JQ, Hurtig HI, Van Deerlin VM, Ritz B, Rausch R, Rhodes SL, Factor SA, Wood-Siverio C, Quinn JF, Chung KA, Peterson AL, Espay AJ, Revilla FJ, Devoto J, Hu SC, Cholerton BA, Wan JY, Montine TJ, Edwards KL, Zabetian CP. APOE, MAPT, and SNCA Genes and Cognitive Performance in Parkinson Disease. JAMA Neurology. 2014;71(11):1405. https://doi.org/10.1001/jamaneurol.2014.1455
  63. Morley JF, Xie SX, Hurtig HI, Stern MB, Colcher A, Horn S, Dahodwala N, Duda JE, Weintraub D, Chen-Plotkin AS, Van Deerlin V, Falcone D, Siderowf A. Genetic influences on cognitive decline in Parkinson’s disease. Movement Disorders. 2012;27(4):512-518. https://doi.org/10.1002/mds.24946
  64. Paul KC, Rausch R, Creek MM, Sinsheimer JS, Bronstein JM, Bordelon Y, Ritz B. APOE, MAPT, and COMT and Parkinson’s Disease Susceptibility and Cognitive Symptom Progression. Journal of Parkinson’s Disease. 2016;6(2):349-359. https://doi.org/10.3233/jpd-150762
  65. Winder-Rhodes SE, Hampshire A, Rowe JB, Peelle JE, Robbins TW, Owen AM, Barker RA. Association between MAPT haplotype and memory function in patients with Parkinson’s disease and healthy aging individuals. Neurobiology of Aging. 2015;36(3):1519-1528. https://doi.org/10.1016/j.neurobiolaging.2014.12.006
  66. Nombela C, Rowe JB, Winder-Rhodes SE, Hampshire A, Owen AM, Breen DP, Duncan GW, Khoo TK, Yarnall AJ, Firbank MJ, Chinnery PF, Robbins TW, O’Brien JT, Brooks DJ, Burn DJ; ICICLE-PD study group, Barker RA. Genetic impact on cognition and brain function in newly diagnosed Parkinson’s disease: ICICLE-PD study. Brain. 2014;137(10):2743-2758. https://doi.org/10.1093/brain/awu201
  67. Ziegler E, Foret A, Mascetti L, Muto V, Le Bourdiec-Shaffii A, Stender J, Balteau E, Dideberg V, Bours V, Maquet P, Phillips C. Altered White Matter Architecture in BDNF Met Carriers. PLoS ONE. 2013;8(7):69290. https://doi.org/10.1371/journal.pone.0069290
  68. Baydyuk M, Xu B. BDNF signaling and survival of striatal neurons. Frontiers in Cellular Neuroscience. 2014;8:254. https://doi.org/10.3389/fncel.2014.00254
  69. Gottmann K, Mittmann T, Lessmann V. BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses. Experimental Brain Research. 2009;199(3-4):203-234. https://doi.org/10.1007/s00221-009-1994-z
  70. Shimada H, Makizako H, Doi T, Yoshida D, Tsutsumimoto K, Anan Y, Uemura K, Lee S, Park H, Suzuki T. A Large, Cross-Sectional Observational Study of Serum BDNF, Cognitive Function, and Mild Cognitive Impairment in the Elderly. Frontiers in Aging Neuroscience. 2014;6:69. https://doi.org/10.3389/fnagi.2014.00069
  71. Gunstad J, Benitez A, Smith J, Glickman E, Spitznagel MB, Alexander T, Juvancic-Heltzel J, Murray L. Serum Brain-Derived Neurotrophic Factor Is Associated With Cognitive Function in Healthy Older Adults. Journal of Geriatric Psychiatry and Neurology. 2008;21(3):166-170. https://doi.org/10.1177/0891988708316860
  72. Costa A, Peppe A, Carlesimo GA, Zabberoni S, Scalici F, Caltagirone C, Angelucci F. Brain-derived neurotrophic factor serum levels correlate with cognitive performance in Parkinson’s disease patients with mild cognitive impairment. Frontiers in Behavioral Neuroscience. 2015;9:253. https://doi.org/10.3389/fnbeh.2015.00253
  73. Tonacci A, Borghini A, Mercuri A, Pioggia G, Andreassi M. Brain-derived neurotrophic factor (Val66Met) polymorphism and olfactory ability in young adults. Journal of Biomedical Science. 2013;20(1):57. https://doi.org/10.1186/1423-0127-20-57
  74. Mariani S, Ventriglia M, Simonelli I, Bucossi S, Siotto M, R RS. Meta-Analysis Study on the Role of Bone-Derived Neurotrophic Factor Val66Met Polymorphism in Parkinson’s Disease. Rejuvenation Research. 2015;18(1):40-47. https://doi.org/10.1089/rej.2014.1612
  75. Foltynie T, Lewis SG, Goldberg TE, Blackwell AD, Kolachana BS, Weinberger DR, Robbins TW, Barker RA. The BDNF Val66Met polymorphism has a gender specific influence on planning ability in Parkinson’s disease. Journal of Neurology. 2005;252(7):833-838. https://doi.org/10.1007/s00415-005-0756-5
  76. Guerini FR, Beghi E, Riboldazzi G, Zangaglia R, Pianezzola C, Bono G, Casali C, Di Lorenzo C, Agliardi C, Nappi G, Clerici M, Martignoni E. BDNF Val66Met polymorphism is associated with cognitive impairment in Italian patients with Parkinson’s disease. European Journal of Neurology. 2009;16(11):1240-1245. https://doi.org/10.1111/j.1468-1331.2009.02706.x
  77. Altmann V, Schumacher-Schuh A, Rieck M, Callegari-Jacques S, Rieder C, Hutz M. Val66Met BDNF polymorphism is associated with Parkinson’s disease cognitive impairment. Neuroscience Letters. 2016;615:88-91. https://doi.org/10.1016/j.neulet.2016.01.030
  78. Białecka M, Kurzawski M, Roszmann A, Robowski P, Sitek EJ, Honczarenko K, Mak M, Deptuła-Jarosz M, Gołąb-Janowska M, Droździk M, Sławek J. BDNF G196A (Val66Met) polymorphism associated with cognitive impairment in Parkinson’s disease. Neuroscience Letters. 2014;561:86-90. https://doi.org/10.1016/j.neulet.2013.12.051
  79. Svetel M, Pekmezovic T, Markovic V, Novaković I, Dobričić V, Djuric G, Stefanova E, Kostić V. No Association between Brain-Derived Neurotrophic Factor G196A Polymorphism and Clinical Features of Parkinson’s Disease. European Neurology. 2013;70(5-6):257-262. https://doi.org/10.1159/000352033
  80. Gao L, Díaz-Corrales FJ, Carrillo F, Díaz-Martín J, Caceres-Redondo MT, Carballo M, Palomino A, López-Barneo J, Mir P. Brain-derived neurotrophic factor G196A polymorphism and clinical features in Parkinson’s disease. Acta Neurologica Scandinavica. 2010;122(1):41-45. https://doi.org/10.1111/j.1600-0404.2009.01253.x
  81. Wishart HA, Saykin AJ, McAllister TW, Rabin LA, McDonald BC, Flashman LA, Roth RM, Mamourian AC, Tsongalis GJ, Rhodes CH. Regional brain atrophy in cognitively intact adults with a single APOE 4 allele. Neurology. 2006;67(7):1221-1224. https://doi.org/10.1212/01.wnl.0000238079.00472.3a
  82. Farrer L. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA: The Journal of the American Medical Association. 1997;278(16):1349-1356. https://doi.org/10.1001/jama.278.16.1349
  83. Gallardo G, Schlüter O, Südhof T. A molecular pathway of neurodegeneration linking α-synuclein to ApoE and Aβ peptides. Nature Neuroscience. 2008;11(3):301-308. https://doi.org/10.1038/nn2058
  84. ARAI H. Apolipoprotein E gene in Parkinson’s disease with or without dementia. The Lancet. 1994;344(8926):889. https://doi.org/10.1016/s0140-6736(94)92862-2
  85. Pankratz N, Byder L, Halter C, Rudolph A, Shults CW, Conneally PM, Foroud T, Nichols WC. Presence of an APOE4 allele results in significantly earlier onset of Parkinson’s disease and a higher risk with dementia. Movement Disorders. 2006;21(1):45-49. https://doi.org/10.1002/mds.20663
  86. Federoff M, Jimenez-Rolando B, Nalls M, Singleton A. A large study reveals no association between APOE and Parkinson’s disease. Neurobiology of Disease. 2012;46(2):389-392. https://doi.org/10.1016/j.nbd.2012.02.002
  87. Williams-Gray CH, Goris A, Saiki M, Foltynie T, Compston DA, Sawcer SJ, Barker RA. Apolipoprotein E genotype as a risk factor for susceptibility to and dementia in Parkinson’s Disease. Journal of Neurology. 2009;256(3):493-498. https://doi.org/10.1007/s00415-009-0119-8
  88. Kurz M, Dekomien G, Nilsen O, Larsen J, Aarsland D, Alves G. APOE Alleles in Parkinson Disease and Their Relationship to Cognitive Decline: A Population-based, Longitudinal Study. Journal of Geriatric Psychiatry and Neurology. 2009;22(3):166-170. https://doi.org/10.1177/0891988709332945
  89. Abdolmaleky H, Thiagalingam S, Wilcox M. Genetics and Epigenetics in Major Psychiatric Disorders. American Journal of Pharmaco Genomics. 2005;5(3):149-160. https://doi.org/10.2165/00129785-200505030-00002
  90. Jiménez-Jiménez F, Alonso-Navarro H, García-Martín E, Agúndez J. COMT gene and risk for Parkinson’s disease. Pharmacogenetics and Genomics. 2014;24(7):331-339. https://doi.org/10.1097/fpc.0000000000000056
  91. Corvol JC, Bonnet C, Charbonnier-Beaupel F, Bonnet AM, Fiévet MH, Bellanger A, Roze E, Meliksetyan G, Ben Djebara M, Hartmann A, Lacomblez L, Vrignaud C, Zahr N, Agid Y, Costentin J, Hulot JS, Vidailhet M. The COMT Val158Met polymorphism affects the response to entacapone in Parkinson’s disease: A randomized crossover clinical trial. Annals of Neurology. 2011;69(1):111-118. https://doi.org/10.1002/ana.22155
  92. Malhotra A, Kestler L, Mazzanti C, Bates J, Goldberg T, Goldman D. A Functional Polymorphism in the COMT Gene and Performance on a Test of Prefrontal Cognition. American Journal of Psychiatry. 2002;159(4):652-654. https://doi.org/10.1176/appi.ajp.159.4.652
  93. Sheldrick AJ, Krug A, Markov V, Leube D, Michel TM, Zerres K, Eggermann T, Kircher T. Effect of COMT val158met genotype on cognition and personality. European Psychiatry. 2008;23(6):385-389. https://doi.org/10.1016/j.eurpsy.2008.05.002
  94. Tsai SJ, Yu YW, Chen TJ, Chen JY, Liou YJ, Chen MC, Hong CJ. Association study of a functional catechol-O-methyltransferase-gene polymorphism and cognitive function in healthy females. Neuroscience Letters. 2003;338(2):123-126. https://doi.org/10.1016/s0304-3940(02)01396-4
  95. Foltynie T, Goldberg TE, Lewis SG, Blackwell AD, Kolachana BS, Weinberger DR, Robbins TW, Barker RA. Planning ability in Parkinson’s disease is influenced by the COMT val158met polymorphism. Movement Disorders. 2004;19(8):885-891. https://doi.org/10.1002/mds.20118
  96. Hoogland J, de Bie R, Williams-Gray C, Muslimović D, Schmand B, Post B. Catechol-O-methyltransferase val158met and cognitive function in Parkinson’s disease. Movement Disorders. 2010;25(15):2550-2554. https://doi.org/10.1002/mds.23319
  97. Gegg M, Schapira A. Mitochondrial dysfunction associated with glucocerebrosidase deficiency. Neurobiology of Disease. 2016;90:43-50. https://doi.org/10.1016/j.nbd.2015.09.006
  98. Trampush JW, Yang ML, Yu J, Knowles E, Davies G, Liewald DC, Starr JM, Djurovic S, Melle I, Sundet K, Christoforou A, Reinvang I, DeRosse P, Lundervold AJ, Steen VM, Espeseth T, Räikkönen K, Widen E, Palotie A, Eriksson JG, Giegling I, Konte B, Roussos P, Giakoumaki S, Burdick KE, Payton A, Ollier W, Horan M, Chiba-Falek O, Attix DK, Need AC, Cirulli ET, Voineskos AN, Stefanis NC, Avramopoulos D, Hatzimanolis A, Arking DE, Smyrnis N, Bilder RM, Freimer NA, Cannon TD, London E, Poldrack RA, Sabb FW, Congdon E, Conley ED, Scult MA, Dickinson D, Straub RE, Donohoe G, Morris D, Corvin A, Gill M, Hariri AR, Weinberger DR, Pendleton N, Bitsios P, Rujescu D, Lahti J, Le Hellard S, Keller MC, Andreassen OA, Deary IJ, Glahn DC, Malhotra AK, Lencz T. GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Molecular Psychiatry. 2017;22(3):336-345. https://doi.org/10.1038/mp.2016.244

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.