The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Petrova L.V.

Moscow scientific and practical center of medical rehabilitation, restorative and sports medicine of the Department of health of the city of Moscow

Kostenko E.V.

Pogonchenkova I.V.

Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine

Rylsky A.V.

Moscow scientific and practical center of medical rehabilitation, restorative and sports medicine of the Department of health of the city of Moscow

Kamchatnov P.R.

Pirogov Russian National Research Medical University

Multimodal technology in the correction of post-stroke motor disorders

Authors:

Petrova L.V., Kostenko E.V., Pogonchenkova I.V., Rylsky A.V., Kamchatnov P.R.

More about the authors

Read: 2880 times


To cite this article:

Petrova LV, Kostenko EV, Pogonchenkova IV, Rylsky AV, Kamchatnov PR. Multimodal technology in the correction of post-stroke motor disorders. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(3‑2):58‑67. (In Russ.)
https://doi.org/10.17116/jnevro202312303258

Recommended articles:
Dyna­mics of motor and functional diso­rders in the early reco­very period after ischemic stroke. Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(5):13-22
Impact of various reha­bilitation programs on anxiety and depression after surgery of early-stage cervical cancer. Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(5):40-44
Effi­ciency of complex medi­cal reha­bilitation after pulmonary enda­rterectomy. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;(6):629-636
Stroke: current state of the problem. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):7-18
Non-drug technologies in reha­bilitation of women after rectocele repair. Rege­nerative Biotechnologies, Preventive, Digi­tal and Predictive Medi­cine. 2024;(4):82-89

References:

  1. Veras M, Kairy D, Rogante M, Giacomozzi C, Saraiva S. Scoping review of outcome measures used in telerehabilitation and virtual reality for post-stroke rehabilitation. J Telemed Telecare. 2017;23(6):567-587.  https://doi.org/10.1177/1357633X16656235
  2. Wang R, Langhammer B. Predictors of quality of life for chronic stroke survivors in relation to cultural differences: a literature review. Scand J Caring Sci. 2018;32(2):502-514.  https://doi.org/10.1111/scs.12533
  3. Prynn JE, Kuper H. Perspectives on Disability and Non-Communicable Diseases in Low- and Middle-Income Countries, with a Focus on Stroke and Dementia. Int J Environ Res Public Health. 2019;16(18):3488. https://doi.org/10.3390/ijerph16183488
  4. Levin OS. Post-stroke motor and cognitive disorders: clinical features and modern approaches to rehabilitation. Zhurnal Nevrologii i Psihiatrii im. C.C. Korsakova. 2020;120(11):99-107. (In Russ.). https://doi.org/10.17116/jnevro202012011199
  5. Khat’kova SE, Kostenko EV, Akulov MA, et al. Modern aspects of the pathophysiology of walking disorders and their rehabilitation in post-stroke patients. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2019;119(12/2):43-50. (In Russ.). https://doi.org/10.17116/jnevro201911912243
  6. Algurén B, Lundgren-Nilsson A, Sunnerhagen KS. Functioning of stroke survivors — A validation of the ICF core set for stroke in Sweden. Disabil Rehabil. 2010;32(7):551-559.  https://doi.org/10.3109/09638280903186335
  7. Batchelor FA, Mackintosh SF, Said CM, et al. Falls after stroke. Int J Stroke. 2012;7(6):482-490.  https://doi.org/10.1111/j.1747-4949.2012.00796.x
  8. Denissen S, Staring W, Kunkel D, et al. Interventions for preventing falls in people after stroke. Cochrane Database Syst Rev. 2019;10(10):CD008728. https://doi.org/10.1002/14651858
  9. Li S, Francisco GE, Zhou P. Post-stroke Hemiplegic Gait: New Perspective and Insights. Front Physiol. 2018;9:1021. https://doi.org/10.3389/fphys.2018.01021
  10. Clark DJ, Ting LH, Zajac FE, et al. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. J Neurophysiol. 2010;103(2):844-857.  https://doi.org/10.1152/jn.00825.2009
  11. Wang FC, Chen SF, Lin CH, et al. Detection and Classification of Stroke Gaits by Deep Neural Networks Employing Inertial Measurement Units. Sensors (Basel). 2021;21(5):1864. https://doi.org/10.3390/s21051864
  12. Kline TL, Schmit BD, Kamper DG. Exaggerated interlimb neural coupling following stroke. Brain. 2007;130(Pt 1):159-169.  https://doi.org/10.1093/brain/awl278
  13. Finley JM, Perreault EJ, Dhaher YY. Stretch reflex coupling between the hip and knee: implications for impaired gait following stroke. Exp Brain Res. 2008;188(4):529-540.  https://doi.org/10.1007/s00221-008-1383-z
  14. Routson RL, Kautz SA, Neptune RR. Modular organization across changing task demands in healthy and poststroke gait. Physiol Rep. 2014;2(6):e12055. https://doi.org/10.14814/phy2.12055
  15. Cheung VCK, Seki K. Approaches to revealing the neural basis of muscle synergies: a review and a critique. J Neurophysiol. 2021;125(5):1580-1597. https://doi.org/10.1152/jn.00625.2019
  16. Beyaert C, Vasa R, Frykberg GE. Gait post-stroke: Pathophysiology and rehabilitation strategies. Neurophysiol Clin. 2015;45(4-5):335-355.  https://doi.org/10.1016/j.neucli.2015.09.005
  17. Pequera G, Ramírez Paulino I, Biancardi CM. Common motor patterns of asymmetrical and symmetrical bipedal gaits. Peer J. 2021;9:e11970. https://doi.org/10.7717/peerj.11970
  18. Chantraine F, Filipetti P, Schreiber C, et al. Proposition of a Classification of Adult Patients with Hemiparesis in Chronic Phase. PLoS One. 2016;11(6):e0156726. https://doi.org/10.1371/journal.pone.0156726
  19. Hara Y. Novel functional electrical stimulation for neurorehabilitation. Brain Nerve. 2010;62(2):113-124. 
  20. Kern H, Salmons S, Mayr W, et al. Recovery of long-term denervated human muscles induced by electrical stimulation. Muscle Nerve. 2005;31(1):98-101.  https://doi.org/10.1002/mus.20149
  21. Knutson JS, Fu MJ, Sheffler LR, et al. Neuromuscular Electrical Stimulation for Motor Restoration in Hemiplegia. Phys Med Rehabil Clin N Am. 2015;26(4):729-745.  https://doi.org/10.1016/j.pmr.2015.06.002
  22. Monte-Silva K, Piscitelli D, Norouzi-Gheidari N, et al. Electromyogram-Related Neuromuscular Electrical Stimulation for Restoring Wrist and Hand Movement in Poststroke Hemiplegia: A Systematic Review and Meta-Analysis. Neurorehabil Neural Repair. 2019;33(2):96-111.  https://doi.org/10.1177/1545968319826053
  23. Marotta N, Demeco A, Inzitari MT, et al. Neuromuscular electrical stimulation and shortwave diathermy in unrecovered Bell palsy: A randomized controlled study. Medicine (Baltimore). 2020;99(8):e19152. https://doi.org/10.1097/MD.0000000000019152
  24. Rushton DN. Functional electrical stimulation and rehabilitation--an hypothesis. Med Eng Phys. 2003;25(1):75-78.  https://doi.org/10.1016/s1350-4533(02)00040-1
  25. Stein C, Fritsch CG, Robinson C, et al. Effects of Electrical Stimulation in Spastic Muscles After Stroke: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Stroke. 2015;46(8):2197-2205. https://doi.org/10.1161/STROKEAHA.115.009633
  26. Lisinski P, Huber J, Samborski W, et al. Neurophysiological assessment of the electrostimulation procedures used in stroke patients during rehabilitation. Int J Artif Organs. 2008;31(1):76-86.  https://doi.org/10.1177/039139880803100111
  27. Kesar TM, Perumal R, Jancosko A, et al. Novel patterns of functional electrical stimulation have an immediate effect on dorsiflexor muscle function during gait for people poststroke. Phys Ther. 2010;90(1):55-66.  https://doi.org/10.2522/ptj.20090140
  28. Genthe K, Schenck C, Eicholtz S, et al. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke. Top Stroke Rehabil. 2018;25(3):186-193.  https://doi.org/10.1080/10749357.2018.1436384
  29. Drużbicki M, Przysada G, Guzik A, et al. The Efficacy of Gait Training Using a Body Weight Support Treadmill and Visual Biofeedback in Patients with Subacute Stroke: A Randomized Controlled Trial. Biomed Res Int. 2018;2018:3812602. https://doi.org/10.1155/2018/3812602
  30. Beasley WC. Instrumentation and equipment for quantitative clinical muscle testing. Arch Phys Med Rehabil. 1956;37(10):604-621. 
  31. Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206-207.  https://doi.org/10.1093/ptj/67.2.206
  32. Collen FM, Wade DT, Robb GF, et al. The Rivermead Mobility Index: a further development of the Rivermead Motor Assessment. Int Disabil Stud. 1991;13(2):50-54.  https://doi.org/10.3109/03790799109166684
  33. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695-699.  https://doi.org/10.1111/j.1532-5415.2005.53221.x
  34. Zigmond AS, Snaith RP. The hospital anxiety and depression scale. Acta Psychiatr Scand. 1983;67(6):361-370.  https://doi.org/10.1111/j.1600-0447.1983.tb09716.x
  35. Shah S, Vanclay F, Cooper B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J Clin Epidemiol. 1989;42(8):703-709.  https://doi.org/10.1016/0895-4356(89)90065-6
  36. Balestroni G, Bertolotti G. L’EuroQol-5D (EQ-5D): uno strumento per la misura della qualità della vita. Monaldi Arch Chest Dis. 2012;78(3):155-159.  https://doi.org/10.4081/monaldi.2012.121
  37. Dajpratham P, Kuptniratsaikul V, Putthakumnerd W, et al. Walking function at 1-year after stroke rehabilitation: a multicenter study. J Med Assoc Thai. 2014;97(1):107-112. 
  38. Stinear CM, Barber PA, Smale PR, et al. Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain. 2007;130(Pt 1):170-180.  https://doi.org/10.1093/brain/awl333
  39. Damulin IV, Ekusheva EV. Analysis of sensorimotor disorders in the late recovery and residual period after ischemic stroke. Rossijskij Medicinskij Zhurnal. 2016;22(4):184-189. (In Russ.). https://doi.org/10.18821/0869-2106-2016-22-4-184-189
  40. Lynch EA, Jones TM, Simpson DB, et al. ACTIOnS Collaboration. Activity monitors for increasing physical activity in adult stroke survivors. Cochrane Database Syst Rev. 2018;7(7):CD012543. https://doi.org/10.1002/14651858.CD012543.pub2
  41. Sharif F, Ghulam S, Malik AN, Saeed Q. Effectiveness of Functional Electrical Stimulation (FES) versus Conventional Electrical Stimulation in Gait Rehabilitation of Patients with Stroke. J Coll Physicians Surg Pak. 2017;27(11):703-706. 
  42. Hong Z, Sui M, Zhuang Z, et al. Effectiveness of Neuromuscular Electrical Stimulation on Lower Limbs of Patients With Hemiplegia After Chronic Stroke: A Systematic Review. Arch Phys Med Rehabil. 2018;99(5):1011-1022.e1.  https://doi.org/10.1016/j.apmr.2017.12.019
  43. He YL, Gao Y, Fan BY. Effectiveness of neuromuscular electrical stimulation combined with rehabilitation training for treatment of post-stroke limb spasticity. Medicine (Baltimore). 2019;98(39):e17261. https://doi.org/10.1097/MD.0000000000017261
  44. Eraifej J, Clark W, France B, et al. Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: a systematic review and meta-analysis. Syst Rev. 2017;6(1):40.  https://doi.org/10.1186/s13643-017-0435-5
  45. Sabut SK, Sikdar C, Kumar R, et al. Functional electrical stimulation of dorsiflexor muscle: effects on dorsiflexor strength, plantar flexor spasticity, and motor recovery in stroke patients. NeuroRehabilitation. 2011;29(4):393-400.  https://doi.org/10.3233/NRE-2011-0717

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.