The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Ukraintseva Yu.V.

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science;
Institute of Biomedical Problems of the Russian Academy of Science

Liaukovich K.M.

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, Russian Federation

The negative impact of sleep disorders on working memory may be mediated by changes in carbohydrate metabolism

Authors:

Ukraintseva Yu.V., Liaukovich K.M.

More about the authors

Read: 3705 times


To cite this article:

Ukraintseva YuV, Liaukovich KM. The negative impact of sleep disorders on working memory may be mediated by changes in carbohydrate metabolism. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(5‑2):11‑17. (In Russ.)
https://doi.org/10.17116/jnevro202212205211

Recommended articles:
Diabetic reti­nopathy and pregnancy. Russian Annals of Ophthalmology. 2024;(6):145-151
Psoriasis: analysis of como­rbid pathology. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(1):16-21
Modern methods of correction of age-related changes in the female body. Plastic Surgery and Aesthetic Medi­cine. 2025;(1):90-96
Cognitive functions asse­ssment of elde­rly patients with type 2 diabetes mellitus. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(3):46-50
Sore throat and panic atta­cks: is a rela­tionship possible? Clinical example. Russian Bulletin of Otorhinolaryngology. 2025;(2):69-73

References:

  1. Sternberg DA, Ballard K, Hardy JL, et al. The largest human cognitive performance dataset reveals insights into the effects of lifestyle factors and aging. Frontiers in Human Neuroscience. 2013;7:292.  https://doi.org/10.3389/fnhum.2013.00292
  2. Bubu OM, Brannick M, Mortimer J, et al. Sleep, Cognitive impairment, and Alzheimer’s disease: A Systematic Review and Meta-Analysis. Sleep. 2017;40(1):23-29.  https://doi.org/10.1093/sleep/zsw032
  3. Lucassen EA, Piaggi P, Dsurney J, et al. Sleep Extension Improves Neurocognitive Functions in Chronically Sleep-Deprived Obese Individuals. Reddy H, ed. PLoS ONE. 2014;9(1):e84832. https://doi.org/10.1371/journal.pone.0084832
  4. Genzel L, Dresler M, Wehrle R, et al. Slow Wave Sleep and REM Sleep Awakenings Do Not Affect Sleep Dependent Memory Consolidation. Sleep. 2009;32(3):302-310.  https://doi.org/10.1093/sleep/32.3.302
  5. Bonnet MH. Acute Sleep Deprivation. In: Principles and Practice of Sleep Medicine. Elsevier; 2005;51-66.  https://doi.org/10.1016/B0-72-160797-7/50012-4
  6. Baddeley AD, Hitch G. Working memory. In: Bower GH, ed. Psychology of Learning and Motivation — Advances in Research and Theory. Vol 8. Academic Press; 1974;47-89.  https://doi.org/10.1016/S0079-7421(08)60452-1
  7. Cowan N. Chapter 20 What are the differences between long-term, short-term, and working memory? In: Sossin W.S., Lacaille J.C., Castellucci V.F., Belleville S., eds. Progress in Brain Research. Vol 169. Elsevier B.V.; 2008;323-338.  https://doi.org/10.1016/S0079-6123(07)00020-9
  8. Conway ARA, Cowan N, Bunting MF, et al. A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence. 2002;30(2):163-183.  https://doi.org/10.1016/S0160-2896(01)00096-4
  9. Oberauer K. Working Memory and Attention — A Conceptual Analysis and Review. Journal of Cognition. 2019;2(1):34-38.  https://doi.org/10.5334/joc.58
  10. Awh E, Barton B, Vogel EK. Visual Working Memory Represents a Fixed Number of Items Regardless of Complexity. Psychological Science. 2007;18(7):622-628.  https://doi.org/10.1111/j.1467-9280.2007.01949.x
  11. Ennis GE, Saelzler U, Umpierrez GE, et al. Prediabetes and working memory in older adults. Brain and Neuroscience Advances. 2020;4:239821282096172. https://doi.org/10.1177/2398212820961725
  12. Kobylecki C, Haense C, Harris JM, et al. Functional neuroanatomical associations of working memory in early-onset Alzheimer’s disease. International Journal of Geriatric Psychiatry. 2018;33(1):176-184.  https://doi.org/10.1002/gps.4703
  13. Backeström A, Papadopoulos K, Eriksson S, et al. Acute hyperglycaemia leads to altered frontal lobe brain activity and reduced working memory in type 2 diabetes. Ginsberg SD, ed. PLOS ONE. 2021;16(3):e0247753. https://doi.org/10.1371/journal.pone.0247753
  14. Hawkins MAW, Gunstad J, Calvo D, et al. Higher fasting glucose is associated with poorer cognition among healthy young adults. Health Psychology. 2016;35(2):199-202.  https://doi.org/10.1037/hea0000248
  15. Joo EY, Yoon CW, Koo DL, et al. Adverse Effects of 24 Hours of Sleep Deprivation on Cognition and Stress Hormones. Journal of Clinical Neurology. 2012;8(2):146.  https://doi.org/10.3988/jcn.2012.8.2.146
  16. Lo JC, Twan DCK, Karamchedu S, et al. Differential effects of split and continuous sleep on neurobehavioral function and glucose tolerance in sleep-restricted adolescents. Sleep. 2019;42(5):34-39.  https://doi.org/10.1093/sleep/zsz037
  17. Sattari N, Whitehurst LN, Ahmadi M, et al. Does working memory improvement benefit from sleep in older adults? Neurobiology of Sleep and Circadian Rhythms. 2019;6:53-61.  https://doi.org/10.1016/j.nbscr.2019.01.001
  18. Jones K, Harrison Y. Frontal lobe function, sleep loss and fragmented sleep. Sleep Medicine Reviews. 2001;5(6):463-475.  https://doi.org/10.1053/smrv.2001.0203
  19. Horne JA. Human Sleep, Sleep Loss and Behaviour. British Journal of Psychiatry. 1993;162(3):413-419.  https://doi.org/10.1192/bjp.162.3.413
  20. Ingvar DH. «Hyperfrontal» distribution of the cerebral grey matter flow in resting wakefulness; on the functional anatomy of the conscious state. Acta Neurologica Scandinavica. 2009;60(1):12-25.  https://doi.org/10.1111/j.1600-0404.1979.tb02947.x
  21. Borbély AA, Baumann F, Brandeis D, et al. Sleep deprivation: Effect on sleep stages and EEG power density in man. Electroencephalography and Clinical Neurophysiology. 1981;51(5):483-493.  https://doi.org/10.1016/0013-4694(81)90225-X
  22. Wager TD, Smith EE. Neuroimaging studies of working memory: Cognitive, Affective, & Behavioral Neuroscience. 2003;3(4):255-274.  https://doi.org/10.3758/CABN.3.4.255
  23. Zhang L, Shao Y, Liu Z, et al. Decreased Information Replacement of Working Memory After Sleep Deprivation: Evidence From an Event-Related Potential Study. Frontiers in Neuroscience. 2019;13:12-18.  https://doi.org/10.3389/fnins.2019.00408
  24. Dai C, Zhang Y, Cai X, et al. Effects of Sleep Deprivation on Working Memory: Change in Functional Connectivity Between the Dorsal Attention, Default Mode, and Fronto-Parietal Networks. Frontiers in Human Neuroscience. 2020;14(3):23-27.  https://doi.org/10.3389/fnhum.2020.00360
  25. Adam K, Oswald I. Sleep is for tissue restoration. Journal of the Royal College of Physicians of London. 1977;11(4):376-388.  https://www.ncbi.nlm.nih.gov/pubmed/328867
  26. Xie L, Kang H, Xu Q, et al. Sleep Drives Metabolite Clearance from the Adult Brain. Science. 2013;342(6156):373-377.  https://doi.org/10.1126/science.1241224
  27. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. The Lancet. 1999;354(9188):1435-1439. https://doi.org/10.1016/S0140-6736(99)01376-8
  28. Nefs GM, Bazelmans E, Donga E, et al. Sweet dreams or bitter nightmare: a narrative review of 25 years of research on the role of sleep in diabetes and the contributions of behavioural science. Diabetic Medicine: a Journal of the British Diabetic Association. 2020;37(3):418-426.  https://doi.org/10.1111/dme.14211
  29. Cappuccio FP, D’Elia L, Strazzullo P, et al. Quantity and Quality of Sleep and Incidence of Type 2 Diabetes. Diabetes Care. 2010;33(2):414-420.  https://doi.org/10.2337/dc09-1124
  30. Leproult R, Holmbäck U, Van Cauter E. Circadian Misalignment Augments Markers of Insulin Resistance and Inflammation, Independently of Sleep Loss. Diabetes. 2014;63(6):1860-1869. https://doi.org/10.2337/db13-1546
  31. Donga E, van Dijk M, van Dijk JG, et al. A Single Night of Partial Sleep Deprivation Induces Insulin Resistance in Multiple Metabolic Pathways in Healthy Subjects. The Journal of Clinical Endocrinology & Metabolism. 2010;95(6):2963-2968. https://doi.org/10.1210/jc.2009-2430
  32. Herzog N, Jauch-Chara K, Hyzy F, et al. Selective slow wave sleep but not rapid eye movement sleep suppression impairs morning glucose tolerance in healthy men. Psychoneuroendocrinology. 2013;38(10):2075-2082. https://doi.org/10.1016/j.psyneuen.2013.03.018
  33. Ukraintseva YV, Liaukovich KM, Saltykov KA, et al. Selective slow-wave sleep suppression affects glucose tolerance and melatonin secretion. The role of sleep architecture. Sleep Medicine. 2020;67:171-183.  https://doi.org/10.1016/j.sleep.2019.11.1254
  34. Spiegel K, Leproult R, L’Hermite-Balériaux M, et al. Leptin Levels Are Dependent on Sleep Duration: Relationships with Sympathovagal Balance, Carbohydrate Regulation, Cortisol, and Thyrotropin. The Journal of Clinical Endocrinology & Metabolism. 2004;89(11):5762-5771. https://doi.org/10.1210/jc.2004-1003
  35. Toi N, Inaba M, Kurajoh M, et al. Improvement of glycemic control by treatment for insomnia with suvorexant in type 2 diabetes mellitus. Journal of Clinical & Translational Endocrinology. 2019;15:37-44.  https://doi.org/10.1016/j.jcte.2018.12.006
  36. Loredo JS, Nelesen R, Ancoli-Israel S, et al. Sleep Quality and Blood Pressure Dipping in Normal Adults. Sleep. 2004;27(6):1097-1103. https://doi.org/10.1093/sleep/27.6.1097
  37. Tochikubo O, Ikeda A, Miyajima E, et al. Effects of Insufficient Sleep on Blood Pressure Monitored by a New Multibiomedical Recorder. Hypertension. 1996;27(6):1318-1324. https://doi.org/10.1161/01.HYP.27.6.1318
  38. Mancia G, Fagard R, Narkiewicz K, et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension. European Heart Journal. 2013;34(28):2159-2219. https://doi.org/10.1093/eurheartj/eht151
  39. Brandenberger G, Ehrhart J, Piquard F, et al. Inverse coupling between ultradian oscillations in delta wave activity and heart rate variability during sleep. Clinical Neurophysiology. 2001;112(6):992-996.  https://doi.org/10.1016/S1388-2457(01)00507-7
  40. Steiger A, Guldner J, Hemmeter U, et al. Effects of Growth Hormone-Releasing Hormone and Somatostatin on Sleep EEG and Nocturnal Hormone Secretion in Male Controls. Neuroendocrinology. 1992;56(4):566-573.  https://doi.org/10.1159/000126275
  41. Born J, Fehm H. Hypothalamus-pituitary-adrenal activity during human sleep: A coordinating role for the limbic hippocampal system. Experimental and Clinical Endocrinology & Diabetes. 2009;106(03):153-163.  https://doi.org/10.1055/s-0029-1211969
  42. van Liempt S, Arends J, Cluitmans PJM, et al. Sympathetic activity and hypothalamo-pituitary — adrenal axis activity during sleep in post-traumatic stress disorder: A study assessing polysomnography with simultaneous blood sampling. Psychoneuroendocrinology. 2013;38(1):155-165.  https://doi.org/10.1016/j.psyneuen.2012.05.015
  43. Voderholzer U, Piosczyk H, Holz J, et al. The impact of increasing sleep restriction on cortisol and daytime sleepiness in adolescents. Neuroscience Letters. 2012;507(2):161-166.  https://doi.org/10.1016/j.neulet.2011.12.014
  44. Ukraintseva YV, Liaukovich KM, Polishchuk AA, et al. Slow-wave sleep and androgens: selective slow-wave sleep suppression affects testosterone and 17α-hydroxyprogesterone secretion. Sleep Medicine. 2018;48:117-126.  https://doi.org/10.1016/j.sleep.2018.04.012
  45. Benedict C, Kern W, Schmid SM, et al. Early morning rise in hypothalamic—pituitary—adrenal activity: A role for maintaining the brain’s energy balance. Psychoneuroendocrinology. 2009;34(3):455-462.  https://doi.org/10.1016/j.psyneuen.2008.10.010
  46. Khani S, Tayek JA. Cortisol increases gluconeogenesis in humans: its role in the metabolic syndrome. Clinical Science. 2001;101(6):739.  https://doi.org/10.1042/CS20010180
  47. Summers SJ, Keegan RJ, Flood A, et al. The Acute Readiness Monitoring Scale: Assessing Predictive and Concurrent Validation. Frontiers in Psychology. 2021;12(1):23-27.  https://doi.org/10.3389/fpsyg.2021.738519
  48. Alonso-Vale MIC, Andreotti S, Borges-Silva CDN, et al. Intermittent and rhythmic exposure to melatonin in primary cultured adipocytes enhances the insulin and dexamethasone effects on leptin expression. Journal of Pineal Research. 2006;41(1):28-34.  https://doi.org/10.1111/j.1600-079X.2006.00328.x
  49. Cipolla-Neto J, Amaral FG, Afeche SC, et al. Melatonin, energy metabolism, and obesity: a review. Journal of Pineal Research. 2014;56(4):371-381.  https://doi.org/10.1111/jpi.12137
  50. Li C, Zhou X. Melatonin and male reproduction. Clinica Chimica Acta. 2015;446:175-180.  https://doi.org/10.1016/j.cca.2015.04.029
  51. Umapathysivam M, Grossmann M, Wittert GA. Effects of androgens on glucose metabolism. Best Practice & Research Clinical Endocrinology & Metabolism. Published online March 2022:101654. https://doi.org/10.1016/j.beem.2022.101654
  52. Ackermann K, Plomp R, Lao O, et al. Effect of sleep deprivation on rhythms of clock gene expression and melatonin in humans. Chronobiology International. 2013;30(7):901-909.  https://doi.org/10.3109/07420528.2013.784773
  53. Davies SK, Ang JE, Revell VL, et al. Effect of sleep deprivation on the human metabolome. Proceedings of the National Academy of Sciences. 2014;111(29):10761-10766. https://doi.org/10.1073/pnas.1402663111
  54. Miguez JM, Simonneaux V, Pevet P. The role of the intracellular and extracellular serotonin in the regulation of melatonin production in rat pinealocytes. Journal of Pineal Research. 1997;23(2):63-71.  https://doi.org/10.1111/j.1600-079X.1997.tb00337.x
  55. González S, Moreno-Delgado D, Moreno E, et al. Circadian-Related Heteromerization of Adrenergic and Dopamine D4 Receptors Modulates Melatonin Synthesis and Release in the Pineal Gland. Schibler U, ed. PLoS Biology. 2012;10(6):e1001347. https://doi.org/10.1371/journal.pbio.1001347
  56. Messier C. Glucose improvement of memory: a review. European Journal of Pharmacology. 2004;490(1-3):33-57.  https://doi.org/10.1016/j.ejphar.2004.02.043
  57. Tomlinson DR, Gardiner NJ. Glucose neurotoxicity. Nature Reviews Neuroscience. 2008;9(1):36-45.  https://doi.org/10.1038/nrn2294
  58. Dennis SH, Jaafari N, Cimarosti H, et al. Oxygen/Glucose Deprivation Induces a Reduction in Synaptic AMPA Receptors on Hippocampal CA3 Neurons Mediated by mGluR1 and Adenosine A3 Receptors. Journal of Neuroscience. 2011;31(33):11941-11952. https://doi.org/10.1523/JNEUROSCI.1183-11.2011
  59. Heller SR, Macdonald IA. The Measurement of Cognitive Function During Acute Hypoglycaemia: Experimental Limitations and Their Effect on the Study of Hypoglycaemia Unawareness. Diabetic Medicine. 1996;13(7):607-615. https://doi.org/10.1002/(SICI)1096-9136(199607)13:7<607::AID-DIA159>3.0.CO;2-I "> 3.0.CO;2-I" target="_blank">https://doi.org/10.1002/(SICI)1096-9136(199607)13:7<607::AID-DIA159>3.0.CO;2-I
  60. Foster JK, Lidder PG, Sünram SI. Glucose and memory: fractionation of enhancement effects? Psychopharmacology. 1998;137(3):259-270.  https://doi.org/10.1007/s002130050619
  61. Stollery B, Christian L. Glucose improves object-location binding in visual-spatial working memory. Psychopharmacology. 2016;233(3):529-547.  https://doi.org/10.1007/s00213-015-4125-5
  62. Deary IJ, Sommerfield AJ, McAulay V, et al. Moderate hypoglycaemia obliterates working memory in humans with and without insulin treated diabetes. Journal of Neurology, Neurosurgery & Psychiatry. 2003;74(2):278-279.  https://doi.org/10.1136/jnnp.74.2.278-a
  63. McNay EC, Fries TM, Gold PE. Decreases in rat extracellular hippocampal glucose concentration associated with cognitive demand during a spatial task. Proceedings of the National Academy of Sciences. 2000;97(6):2881-2885. https://doi.org/10.1073/pnas.050583697
  64. Fujioka M, Okuchi K, Hiramatsu KI, et al. Specific Changes in Human Brain After Hypoglycemic Injury. Stroke. 1997;28(3):584-587.  https://doi.org/10.1161/01.STR.28.3.584
  65. Lamport DJ, Lawton CL, Mansfield MW, et al. Impairments in glucose tolerance can have a negative impact on cognitive function: A systematic research review. Neuroscience & Biobehavioral Reviews. 2009;33(3):394-413.  https://doi.org/10.1016/j.neubiorev.2008.10.008
  66. Willette AA, Bendlin BB, Starks EJ, et al. Association of Insulin Resistance With Cerebral Glucose Uptake in Late Middle — Aged Adults at Risk for Alzheimer Disease. JAMA Neurology. 2015;72(9):1013. https://doi.org/10.1001/jamaneurol.2015.0613
  67. van Bussel FCG, Backes WH, van Veenendaal TM, et al. Functional Brain Networks Are Altered in Type 2 Diabetes and Prediabetes: Signs for Compensation of Cognitive Decrements? The Maastricht Study. Diabetes. 2016;65(8):2404-2413. https://doi.org/10.2337/db16-0128
  68. Perticone M, Di Lorenzo C, Arabia G, et al. One Hour-Post-load Plasma Glucose ≥155 mg/dl in Healthy Glucose Normotolerant Subjects Is Associated With Subcortical Brain MRI Alterations and Impaired Cognition: A Pilot Study. Frontiers in Aging Neuroscience. 2021;13(4):23-27.  https://doi.org/10.3389/fnagi.2021.608736
  69. Convit A, Wolf OT, Tarshish C, et al. Reduced glucose tolerance is associated with poor memory performance and hippocampal atrophy among normal elderly. Proceedings of the National Academy of Sciences. 2003;100(4):2019-2022. https://doi.org/10.1073/pnas.0336073100
  70. Convit A. Links between cognitive impairment in insulin resistance: An explanatory model. Neurobiology of Aging. 2005;26(1):31-35.  https://doi.org/10.1016/j.neurobiolaging.2005.09.018
  71. Chen W, Novotny EJ, Zhu XH, et al. Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation. Proceedings of the National Academy of Sciences. 1993;90(21):9896-9900. https://doi.org/10.1073/pnas.90.21.9896
  72. Sattar L, Renneboog B, Decaux G. Hyperglycemia induces attention and gait deficits in diabetic mellitus patients. Acta Diabetologica. 2017;54(10):953-959.  https://doi.org/10.1007/s00592-017-1034-6
  73. Brownlee M. The Pathobiology of Diabetic Complications. Diabetes. 2005;54(6):1615-1625. https://doi.org/10.1002/(SICI)1096-9136(199607)13:7<607::AID-DIA159>3.0.CO;2-I10.2337/diabetes.54.6.1615 "> 3.0.CO;2-I10.2337/diabetes.54.6.1615" target="_blank">https://doi.org/10.1002/(SICI)1096-9136(199607)13:7<607::AID-DIA159>3.0.CO;2-I10.2337/diabetes.54.6.1615
  74. Zheng H, Wu J, Jin Z, et al. Protein Modifications as Manifestations of Hyperglycemic Glucotoxicity in Diabetes and Its Complications. Biochemistry Insights. 2016;9:BCI.S36141. https://doi.org/10.4137/BCI.S36141
  75. Song DW, Xin N, Xie BJ, et al. Formation of a salsolinol-like compound, the neurotoxin, 1-acetyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, in a cellular model of hyperglycemia and a rat model of diabetes. International Journal of Molecular Medicine. 2014;33(3):736-742.  https://doi.org/10.3892/ijmm.2013.1604
  76. Kwok RP, Juorio AV. Concentration of Striatal Tyramine and Dopamine Metabolism in Diabetic Rats and Effect of Insulin Administration. Neuroendocrinology. 1986;43(5):590-596.  https://doi.org/10.1159/000124586
  77. Watanabe M, Kodama T, Hikosaka K. Increase of Extracellular Dopamine in Primate Prefrontal Cortex During a Working Memory Task. Journal of Neurophysiology. 1997;78(5):2795-2798. https://doi.org/10.1152/jn.1997.78.5.2795
  78. Pignalosa FC, Desiderio A, Mirra P, et al. Diabetes and Cognitive Impairment: A Role for Glucotoxicity and Dopaminergic Dysfunction. International Journal of Molecular Sciences. 2021;22(22):12366. https://doi.org/10.3390/ijms222212366
  79. Deadwyler SA, Porrino L, Siegel JM, et al. Systemic and Nasal Delivery of Orexin-A (Hypocretin-1) Reduces the Effects of Sleep Deprivation on Cognitive Performance in Nonhuman Primates. Journal of Neuroscience. 2007;27(52):14239-14247. https://doi.org/10.1523/JNEUROSCI.3878-07.2007
  80. Ukraintseva Y, Liaukovich K, Shilov M. Effects of selective slow-wave sleep suppression on cognitive function. In: Neuroscience for Medicine and Psychology. LLC MAKS Press; 2020;467-467.  https://doi.org/10.29003/m1293.sudak.ns2020-16/467

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.