The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Borisova V.A.

Vladimirsky Moscow Regional Research Clinical Institute

Isakova E.V.

Vladimirsky Moscow Regional Clinical Research Institute

Kotov S.V.

Vladimirsky Moscow Regional Research Clinical Institute

Possibilities of the brain—computer interface in the correction of post-stroke cognitive impairments

Authors:

Borisova V.A., Isakova E.V., Kotov S.V.

More about the authors

Read: 2399 times


To cite this article:

Borisova VA, Isakova EV, Kotov SV. Possibilities of the brain—computer interface in the correction of post-stroke cognitive impairments. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(12‑2):60‑66. (In Russ.)
https://doi.org/10.17116/jnevro202212212260

Recommended articles:
Biomechanical approaches in correction of gait in post-stroke hemi­paresis. Problems of Balneology, Physiotherapy and Exercise Therapy. 2025;(3):24-30

References:

  1. Barbay M, Diouf M, Roussel M, Godefroy O. GRECOGVASC study group. Systematic Review and Meta-Analysis of Prevalence in Post-Stroke Neurocognitive Disorders in Hospital-Based Studies. Dement Geriatr Cogn Disord. 2018;46(5-6):322-334.  https://doi.org/10.1159/000492920
  2. Sun X, Li M, Li Q, et al. Poststroke Cognitive Impairment Research Progress on Application of Brain-Computer Interface. Biomed Res Int. 2022;9935192. https://doi.org/10.1155/2022/9935192
  3. Lo JW, Crawford JD, Desmond DW, et al. Stroke and Cognition (STROKOG) Collaboration. Profile of and risk factors for poststroke cognitive impairment in diverse ethnoregional groups. Neurology. 2019;93(24):2257-2271. https://doi.org/10.1212/WNL.0000000000008612
  4. Soekadar SR, Birbaumer N, Slutzky MW, Cohen LG. Brain-machine interfaces in neurorehabilitation of stroke. Neurobiol Dis. 2015;83:172-179.  https://doi.org/10.1016/j.nbd.2014.11.025
  5. Sebastián-Romagosa M, Cho W, Ortner R, et al. Brain Computer Interface Treatment for Motor Rehabilitation of Upper Extremity of Stroke Patients-A Feasibility Study. Front Neurosci. 2020;14:591435. https://doi.org/10.3389/fnins.2020.591435
  6. Nie J, Yang X. Modulation of Synaptic Plasticity by Exercise Training as a Basis for Ischemic Stroke Rehabilitation. Cell Mol Neurobiol. 2017;37(1):5-16.  https://doi.org/10.1007/s10571-016-0348-1
  7. Ortiz M, Ferrero L, Iáñez E, et al. Sensory Integration in Human Movement: A New Brain-Machine Interface Based on Gamma Band and Attention Level for Controlling a Lower-Limb Exoskeleton. Front Bioeng Biotechnol. 2020;8:735.  https://doi.org/10.3389/fbioe.2020.00735
  8. Kleih SC, Herweg A, Kaufmann T, et al. The WIN-speller: a new intuitive auditory brain-computer interface spelling application. Front Neurosci. 2015;9:346.  https://doi.org/10.3389/fnins.2015.00346
  9. Sharma N, Simmons LH, Jones PS, et al. Motor imagery after subcortical stroke: a functional magnetic resonance imaging study. Stroke. 2009;40(4):1315-1324. https://doi.org/10.1161/STROKEAHA.108.525766
  10. Al-Qazzaz NK, Alyasseri ZAA, Abdulkareem KH, et al. EEG feature fusion for motor imagery: A new robust framework towards stroke patients rehabilitation. Comput Biol Med. 2021;137:104799. https://doi.org/10.1016/j.compbiomed.2021.104799
  11. Kruse A, Suica Z, Taeymans J, Schuster-Amft C. Effect of brain-computer interface training based on non-invasive electroencephalography using motor imagery on functional recovery after stroke — a systematic review and meta-analysis. BMC Neurol. 2020;20(1):385.  https://doi.org/10.1186/s12883-020-01960-5
  12. Le Franc S, Herrera Altamira G, Guillen M, et al. Toward an Adapted Neurofeedback for Post-stroke Motor Rehabilitation: State of the Art and Perspectives. Front Hum Neurosci. 2022;16:917909. https://doi.org/10.3389/fnhum.2022.917909
  13. Xie YL, Yang YX, Jiang H, et al. Brain-machine interface-based training for improving upper extremity function after stroke: A meta-analysis of randomized controlled trials. Front Neurosci. 2022;16:949575. https://doi.org/10.3389/fnins.2022.949575
  14. Lyukmanov RK, Aziatskaya GA, Mokienko OA, et al. Post-stroke rehabilitation training with a brain-computer interface: a clinical and neuropsychological study. Zhurnal Nevrol Psikhiatr im. S.S. Korsakova. 2018;118(8):43-51. (In Russ.). https://doi.org/10.17116/jnevro201811808143
  15. Kotov SV, Romanova MV, Kondur AA, et al. The reorganization of the bioelectric activity of the cerebral cortex after stroke as a result of rehabilitation using the brain-computer interface controlling the exoskeleton of the hand. Zhurnal Vysshei Nervnoi Deiatel’nosti im. I.P. Pavlova. 2020;70(2):217-230. (In Russ.). https://doi.org/10.31857/S0044467720020082
  16. Foong R, Ang KK, Quek C, et al. Assessment of the Efficacy of EEG-Based MI-BCI With Visual Feedback and EEG Correlates of Mental Fatigue for Upper-Limb Stroke Rehabilitation. IEEE Trans Biomed Eng. 2020;67(3):786-795.  https://doi.org/10.1109/TBME.2019.2921198
  17. Wu Q, Yue Z, Ge Y, et al. Brain Functional Networks Study of Subacute Stroke Patients With Upper Limb Dysfunction After Comprehensive Rehabilitation Including BCI Training. Front Neurol. 2020;10:1419. https://doi.org/10.3389/fneur.2019.01419
  18. Zhan G, Chen S, Ji Y, et al. EEG-Based Brain Network Analysis of Chronic Stroke Patients After BCI Rehabilitation Training. Front Hum Neurosci. 2022;16:909610. https://doi.org/10.3389/fnhum.2022.909610
  19. Hammer EM, Halder S, Kleih SC, Kübler A. Psychological Predictors of Visual and Auditory P300 Brain-Computer Interface Performance. Front Neurosci. 2018;12:307.  https://doi.org/10.3389/fnins.2018.00307
  20. Kleih SC, Nijboer F, Halder S, Kübler A. Motivation modulates the P300 amplitude during brain-computer interface use. Clin Neurophysiol. 2010;121(7):1023-1031. https://doi.org/10.1016/j.clinph.2010.01.034
  21. Baykara E, Ruf CA, Fioravanti C, et al. Effects of training and motivation on auditory P300 brain-computer interface performance. Clin Neurophysiol. 2016;127(1):379-387.  https://doi.org/10.1016/j.clinph.2015.04.054
  22. Ke Y, Wang P, Chen Y, et al. Training and testing ERP-BCIs under different mental workload conditions. J Neural Eng. 2016;13(1):016007. https://doi.org/10.1088/1741-2560/13/1/016007
  23. Acevedo BP, Dattatri N, Le J, et al. Cognitive Training with Neurofeedback Using fNIRS Improves Cognitive Function in Older Adults. Int J Environ Res Public Health. 2022;19(9):5531. https://doi.org/10.3390/ijerph19095531
  24. Nouchi R, Nouchi H, Dinet J, Kawashima R. Cognitive Training with Neurofeedback Using NIRS Improved Cognitive Functions in Young Adults: Evidence from a Randomized Controlled Trial. Brain Sci. 2021;12(1):5.  https://doi.org/10.3390/brainsci12010005
  25. Lim CG, Poh XWW, Fung SSD, et al. A randomized controlled trial of a brain-computer interface based attention training program for ADHD. PLoS One. 2019;14(5):0216225. https://doi.org/10.1371/journal.pone.0216225
  26. Lee TS, Goh SJ, Quek SY, et al. A brain-computer interface based cognitive training system for healthy elderly: a randomized control pilot study for usability and preliminary efficacy. PLoS One. 2013;8(11):79419. https://doi.org/10.1371/journal.pone.0079419
  27. Marcos-Martínez D, Martínez-Cagigal V, Santamaría-Vázquez E, et al. Neurofeedback Training Based on Motor Imagery Strategies Increases EEG Complexity in Elderly Population. Entropy (Basel). 2021;23(12):1574. https://doi.org/10.3390/e23121574
  28. Bussalb A, Congedo M, Barthélemy Q, et al. Clinical and Experimental Factors Influencing the Efficacy of Neurofeedback in ADHD: A Meta-Analysis. Front Psychiatry. 2019;10:35.  https://doi.org/10.3389/fpsyt.2019.00035
  29. Gomez-Pilar J, Corralejo R, Nicolas-Alonso LF, et al. Neurofeedback training with a motor imagery-based BCI: neurocognitive improvements and EEG changes in the elderly. Med Biol Eng Comput. 2016;54(11):1655-1666. https://doi.org/10.1007/s11517-016-1454-4
  30. Alatorre-Cruz GC, Fernández T, Castro-Chavira SA, et al. One-Year Follow-Up of Healthy Older Adults with Electroencephalographic Risk for Neurocognitive Disorder After Neurofeedback Training. J Alzheimers Dis. 2022;85(4):1767-1781. https://doi.org/10.3233/JAD-215538
  31. Riccio A, Pichiorri F, Schettini F, et al. Interfacing brain with computer to improve communication and rehabilitation after brain damage. Prog Brain Res. 2016;228:357-387.  https://doi.org/10.1016/bs.pbr.2016.04.018
  32. Ali JI, Viczko J, Smart CM. Efficacy of Neurofeedback Interventions for Cognitive Rehabilitation Following Brain Injury: Systematic Review and Recommendations for Future Research. J Int Neuropsychol Soc. 2020;26(1):31-46.  https://doi.org/10.1017/S1355617719001061
  33. Martin S, Armstrong E, Thomson E, et al. A qualitative study adopting a user-centered approach to design and validate a brain computer interface for cognitive rehabilitation for people with brain injury. Assist Technol. 2018;30(5):233-241.  https://doi.org/10.1080/10400435.2017.1317675
  34. Yang S, Li R, Li H, et al. Exploring the Use of Brain-Computer Interfaces in Stroke Neurorehabilitation. Biomed Res Int. 2021;2021:9967348. https://doi.org/10.1155/2021/9967348
  35. Mane R, Chouhan T, Guan C. BCI for stroke rehabilitation: motor and beyond. J Neural Eng. 2020;17(4):041001. https://doi.org/10.1088/1741-2552/aba162
  36. Pichiorri F, Mattia D. Brain-computer interfaces in neurologic rehabilitation practice. Handb Clin Neurol. 2020;168:101-116.  https://doi.org/10.1016/B978-0-444-63934-9.00009-3
  37. Zhao CG, Ju F, Sun W, et al. Effects of Training with a Brain-Computer Interface-Controlled Robot on Rehabilitation Outcome in Patients with Subacute Stroke: A Randomized Controlled Trial. Neurol Ther. 2022;11(2):679-695.  https://doi.org/10.1007/s40120-022-00333-z
  38. Reichert JL, Kober SE, Schweiger D, et al. Shutting Down Sensorimotor Interferences after Stroke: A Proof-of-Principle SMR Neurofeedback Study. Front Hum Neurosci. 2016;10:348.  https://doi.org/10.3389/fnhum.2016.00348
  39. Nan W, Dias APB, Rosa AC. Neurofeedback Training for Cognitive and Motor Function Rehabilitation in Chronic Stroke: Two Case Reports. Front Neurol. 2019;10:800.  https://doi.org/10.3389/fneur.2019.00800
  40. Cho HY, Kim K, Lee B, Jung J. The effect of neurofeedback on a brain wave and visual perception in stroke: a randomized control trial. J Phys Ther Sci. 2015;27(3):673-676.  https://doi.org/10.1589/jpts.27.673
  41. Kober SE, Schweiger D, Reichert JL, et al. Upper Alpha Based Neurofeedback Training in Chronic Stroke: Brain Plasticity Processes and Cognitive Effects. Appl Psychophysiol Biofeedback. 2017;42(1):69-83.  https://doi.org/10.1007/s10484-017-9353-5
  42. Kotov SV, Isakova EV, Slyun’kova EV. Usage of brain — computer interface+exoskeleton technology as a part of complex multimodal stimulation in the rehabilitation of patients with stroke. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2019;119(12-2):37-42. (In Russ.). https://doi.org/10.17116/jnevro201911912237
  43. Mohanty R, Sinha AM, Remsik AB, et al. Machine Learning Classification to Identify the Stage of Brain-Computer Interface Therapy for Stroke Rehabilitation Using Functional Connectivity. Front Neurosci. 2018;12:353.  https://doi.org/10.3389/fnins.2018.00353
  44. Kleih SC, Gottschalt L, Teichlein E, Weilbach FX. Toward a P300 Based Brain-Computer Interface for Aphasia Rehabilitation after Stroke: Presentation of Theoretical Considerations and a Pilot Feasibility Study. Front Hum Neurosci. 2016;10:547.  https://doi.org/10.3389/fnhum.2016.00547
  45. Musso M, Hübner D, Schwarzkopf S, et al. Aphasia recovery by language training using a brain-computer interface: a proof-of-concept study. Brain Commun. 2022;4(1):fcac008. https://doi.org/10.1093/braincomms/fcac008
  46. Wu Q, Ge Y, Ma D, et al. Analysis of Prognostic Risk Factors Determining Poor Functional Recovery After Comprehensive Rehabilitation Including Motor-Imagery Brain-Computer Interface Training in Stroke Patients: A Prospective Study. Front Neurol. 2021;12:661816. https://doi.org/10.3389/fneur.2021.661816
  47. Mane R, Wu Z, Wang D. Poststroke motor, cognitive and speech rehabilitation with brain-computer interface: a perspective review. Stroke Vasc Neurol. 2022:svn-2022-001506. Epub ahead of print. https://doi.org/10.1136/svn-2022-001506

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.