The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Sviridova A.A.

N.I. Pirogov Russian National Research Medical University;
Federal Center of Cerebrovascular Pathology and Stroke

Kabaeva A.R.

Pirogov Russian National Research Medical University, Moscow, Russia

Rogovsky V.S.

Pirogov Russian National Research Medical University, Moscow, Russia

Kozhieva M.Kh.

Pirogov Russian National Research Medical University, Moscow, Russia

Melnikov M.V.

Pirogov Russian National Research Medical University;
Federal Center of Brain Research and Neurotechnologies of FMBA;
Institute of Immunology of FMBA

Boyko A.N.

N.I. Pirogov Russian National Research Medical University;
Federal Center for Cerebrovascular Pathology and Stroke

Norepinephrine and intestinal microbiome in the early stages of demyelination: clinical-immunological parallels

Authors:

Sviridova A.A., Kabaeva A.R., Rogovsky V.S., Kozhieva M.Kh., Melnikov M.V., Boyko A.N.

More about the authors

Read: 9475 times


To cite this article:

Sviridova AA, Kabaeva AR, Rogovsky VS, Kozhieva MKh, Melnikov MV, Boyko AN. Norepinephrine and intestinal microbiome in the early stages of demyelination: clinical-immunological parallels. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(10‑2):28‑34. (In Russ.)
https://doi.org/10.17116/jnevro201911910228

Recommended articles:
Change in the volume of choroidal plexus at the onset of a demye­linating disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(7-2):94-99
Gut microbiota: role in human health and pote­ntial for personalized medi­cine. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):81-88
The gut microbiota in bipo­lar diso­rder. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):28-33
Nutrition, inte­stinal microbiota, and thyroid autoimmune pathology. Russian Journal of Preventive Medi­cine. 2025;(1):102-108
Short-chain fatty acid profile in patients unde­rgoing maintenance hemo­dialysis. Russian Journal of Evidence-Based Gastroenterology. 2025;(1):47-54

References:

  1. Melnikov MV, Pashenkov MV, Boyko AN. Psychoneuroimmunology and multiple sclerosis. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova. 2015;115(2-2):8-15. (In Russ.)
  2. Sacramento PM, Monteiro C, Dias ASO, Kasahara TM, Ferreira TB, Hygino J, Wing AC, Andrade RM, Rueda F, Sales MC, Vasconcelos CC, Bento CAM. Serotonin decreases the production of Th1/Th17 cytokines and elevates the frequency of regulatory CD4+ T-cell subsets in multiple sclerosis patients. Eur J Immunol. 2018;48(8):1376-1388. https://doi.org/10.1002/eji.201847525
  3. Ferreira TB, Barros PO, Teixeira B, Cassano T, Centurião N, Kasahara TM, Hygino J, Vasconcelos CC, Filho HA, Alvarenga R, Wing AC, Andrade RM, Andrade AF, Bento CA. Dopamine favors expansion of glucocorticoid-resistant IL-17-producing T cells in multiple sclerosis. Brain Behav Immun. 2014;41:182-190. https://doi.org/10.1016/j.bbi.2014.05.013
  4. Melnikov MV, Rogovskii VS, Sviridova AA, Pashenkov MV, Boyko AN. Thy role of dopamine in regulation of interaction between the immune and nervous systems in multiple sclerosis. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova. 2019;119(5):57-58. (In Russ)
  5. Cosentino M, Zaffaroni M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Ghezzi A, Frigo G. Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients: effect of cell stimulation and possible relevance for activation-induced apoptosis. J Neuroimmunol. 2002;133(1-2):233-240. https://doi.org/10.1016/s0165-5728(02)00372-7
  6. Melnikov M, Rogovskii V, Boyko A, Pashenkov M. The influence of biogenic amines on Th17-mediated immune response in multiple sclerosis. Mult Scler Relat Disord. 2018;12(21):19-23. https://doi.org/10.1016/j.msard.2018.02.012
  7. Prado C, Gaiazzi M, González H, Ugalde V, Figueroa A, Osorio-Barrios FJ, López E, Lladser A, Rasini E, Marino F, Zaffaroni M, Cosentino M, Pacheco R. Dopaminergic stimulation of myeloid antigen-presenting cells attenuates signal transducer and activator of transcription 3-activation favouring the development of experimental autoimmune encephalomyelitis. Front Immunol. 2018;9:571. https://doi.org/10.3389/fimmu.2018.00571
  8. Malinova TS, Dijkstra CD, de Vries HE. Serotonin: A mediator of the gut-brain axis in multiple sclerosis. Mult Scler. 2018;24(9):1144-1150. https://doi.org/10.1177/1352458517739975
  9. Castillo-Álvarez F, Marzo-Sola ME. Role of intestinal microbiota in the development of multiple sclerosis. Neurologia. 2017;32(3):175-184. https://doi.org/10.1016/j.nrl.2015.07.005
  10. Melnikov M, Rogovskii V, Boyko A, Pashenkov M. Dopaminergic therapeutics in multiple sclerosis: focus on Th17-Cell functions. J Neuroimmune Pharmacol. 2019. [Epub ahead of print]. https://doi.org/10.1007/s11481-019-09852-3
  11. Sviridova AA, Melnikov MV, Belousova OO, Rogovskii VS, Pashenkov MV, Boyko AN. Serotonergic system as a therapeutic target in multiple sclerosis. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova. 2019;119(2-2):64-72. (In Russ.) https://doi.org/10.17116/jnevro20191192264
  12. Marino F, Cosentino M. Multiple sclerosis: Repurposing dopaminergic drugs for MS — the evidence mounts. Nat Rev Neurol. 2016;12(4):191-192. https://doi.org/10.1038/nrneurol.2016.33
  13. Murphy R, O’Donoghue S, Counihan T, McDonald C, Calabresi PA, Ahmed MA, Kaplin A, Hallahan B. Neuropsychiatric syndromes of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2017;88(8):697-708. https://doi.org/10.1136/jnnp-2016-315367
  14. Mugutdinova BT, Boyko AN, Serkov SV, Fadeeva LM, Enikolopova EV, Bogolepova AN, Lashch NYu, Davydovskaia MF, Khachanova NV, Popova NF, Shchur SG, Riabukhina OV, Romashkin AV, Sidorenko TV, Gusev EI. Data of MRI and neuropsychological tests predict the course of typical remitting multiple sclerosis during five years. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova. 2011;111(2-2):29-37. (In Russ.)
  15. Pitteri M, Romualdi C, Magliozzi R, Monaco S, Calabrese M. Cognitive impairment predicts disability progression and cortical thinning in MS: An 8-year study. Mult Scler. 2017;23(6):848-854. https://doi.org/10.1177/1352458516665496
  16. Kuhle J, Disanto G, Dobson R, Adiutori R, Bianchi L, Topping J, Bestwick JP, Meier UC, Marta M, Dalla Costa G, Runia T, Evdoshenko E, Lazareva N, Thouvenot E, Iaffaldano P, Direnzo V, Khademi M, Piehl F, Comabella M, Sombekke M, Killestein J, Hegen H, Rauch S, D’Alfonso S, Alvarez-Cermeño JC, Kleinová P, Horáková D, Roesler R, Lauda F, Llufriu S, Avsar T, Uygunoglu U, Altintas A, Saip S, Menge T, Rajda C, Bergamaschi R, Moll N, Khalil M, Marignier R, Dujmovic I, Larsson H, Malmestrom C, Scarpini E, Fenoglio C, Wergeland S, Laroni A, Annibali V, Romano S, Martínez AD, Carra A, Salvetti M, Uccelli A, Torkildsen Ø, Myhr KM, Galimberti D, Rejdak K, Lycke J, Frederiksen JL, Drulovic J, Confavreux C, Brassat D, Enzinger C, Fuchs S, Bosca I, Pelletier J, Picard C, Colombo E, Franciotta D, Derfuss T, Lindberg R, Yaldizli Ö, Vécsei L, Kieseier BC, Hartung HP, Villoslada P, Siva A, Saiz A, Tumani H, Havrdová E, Villar LM, Leone M, Barizzone N, Deisenhammer F, Teunissen C, Montalban X, Tintoré M, Olsson T, Trojano M, Lehmann S, Castelnovo G, Lapin S, Hintzen R, Kappos L, Furlan R, Martinelli V, Comi G, Ramagopalan SV, Giovannoni G. Conversion from clinically isolated syndrome to multiple sclerosis: A large multicentre study. Mult Scler. 2015;21(8):1013-1024. https://doi.org/10.1177/1352458514568827
  17. Zipoli V, Goretti B, Hakiki B, Siracusa G, Sorbi S, Portaccio E, Amato MP. Cognitive impairment predicts conversion to multiple sclerosis in clinically isolated syndromes. Mult Scler. 2010;16(1):62-67. https://doi.org/10.1177/1352458509350311
  18. Moccia M, Lanzillo R, Palladino R, Chang KC, Costabile T, Russo C, De Rosa A, Carotenuto A, Saccà F, Maniscalco GT, Brescia Morra V. Cognitive impairment at diagnosis predicts 10-year multiple sclerosis progression. Mult Scler. 2016;22(5):659-667. https://doi.org/10.1177/1352458515599075
  19. Glanz BI, Holland CM, Gauthier SA, Amunwa EL, Liptak Z, Houtchens MK, Sperling RA, Khoury SJ, Guttmann CR, Weiner HL. Cognitive dysfunction in patients with clinically isolated syndromes or newly diagnosed multiple sclerosis. Mult Scler. 2007;13(8):1004-1010. https://doi.org/10.1177/1352458507077943
  20. Di Legge S1, Piattella MC, Pozzilli C, Pantano P, Caramia F, Pestalozza IF, Paolillo A, Lenzi GL. Longitudinal evaluation of depression and anxiety in patients with clinically isolated syndrome at high risk of developing early multiple sclerosis. Mult Scler. 2003;9(3):302-306. https://doi.org/10.1191/1352458503ms921oa
  21. Iaffaldano P, Viterbo RG, Goretti B, Portaccio E, Amato MP, Trojano M. Emotional and neutral verbal memory impairment in multiple sclerosis. J Neurol Sci. 2014;341(1-2):28-31. https://doi.org/10.1016/j.jns.2014.03.038
  22. Runia TF, Jafari N, Siepman DA, Hintzen RQ. Fatigue at time of CIS is an independent predictor of a subsequent diagnosis of multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015;86(5):543-546. https://doi.org/10.1136/jnnp-2014-308374
  23. Simioni S, Ruffieux C, Kleeberg J, Bruggimann L, Annoni JM, Schluep M. Preserved decision making ability in early multiple sclerosis. J Neurol. 2008;255(11):1762-1769. https://doi.org/10.1007/s00415-008-0025-5
  24. Rintala A, Matcham F, Radaelli M, Locafaro G, Simblett S, Barattieri di San Pietro C, Bulgari V, Burke P, Devonshire J, Weyer J, Wykes T, Comi G, Hotopf M, Myin-Germeys I; on the behalf of the RADAR-CNS Consortium. Emotional outcomes in clinically isolated syndrome and early phase multiple sclerosis: a systematic review and meta-analysis. J Psychosom Res. 2019;124:109761. https://doi.org/10.1016/j.jpsychores.2019.109761
  25. Butler E, Matcham F, Chalder T. A systematic review of anxiety amongst people with multiple sclerosis. Mult Scler Relat Disord. 2016;10:145-168. https://doi.org/10.1016/j.msard.2016.10.003
  26. Giordano A, Granella F, Lugaresi A, Martinelli V, Trojano M, Confalonieri P, Radice D, Solari A; SIMS-Trial group. Anxiety and depression in multiple sclerosis patients around diagnosis. J Neurol Sci. 2011;307(1-2):86-91. https://doi.org/10.1016/j.jns.2011.05.008
  27. Labiano-Fontcuberta A, Martínez-Ginés ML, Aladro Y, Ayuso L, Mitchell AJ, Puertas-Martín V, Cerezo M, Higueras Y, Benito-León J. A comparison study of cognitive deficits in radiologically and clinically isolated syndromes. Mult Scler. 2016;22(2):250-253. https://doi.org/10.1177/1352458515591072
  28. Labiano-Fontcuberta A, Benito-Leon J. Radiologically isolated syndrome: An update on a rare entity. Mult Scler. 2016;22:1514-1521. https://doi.org/10.1177/1352458516653666
  29. Lebrun C1, Blanc F, Brassat D, Zephir H, de Seze J; CFSEP. Cognitive function in radiologically isolated syndrome. Mult Scler. 2010;16(8):919-925. https://doi.org/10.1177/1352458510375707
  30. Amato MP, Hakiki B, Goretti B, Rossi F, Stromillo ML, Giorgio A, Roscio M, Ghezzi A, Guidi L, Bartolozzi ML, Portaccio E, De Stefano N; Italian RIS/MS Study Group. Association of MRI metrics and cognitive impairment in radiologically isolated syndromes. Neurology. 2012;78(5):309-314. https://doi.org/10.1212/WNL.0b013e31824528c9
  31. Yamout B, Al Khawajah M. Radiologically isolated syndrome and multiple sclerosis. Mult Scler Relat Disord. 2017;17:234-237. https://doi.org/10.1016/j.msard.2017.08.016
  32. Labiano-Fontcuberta A, Aladro Y, Martínez-Ginés ML, Ayuso L, Mitchell AJ, Puertas V, Cerezo M, Higueras Y, Benito-León J. Psychiatric disturbances in radiologically isolated syndrome. J Psychiatr Res. 2015;68:309-315. https://doi.org/10.1016/j.jpsychires.2015.05.008
  33. Liu XJ, Ye HX, Li WP, Dai R, Chen D, Jin M. Relationship between psychosocial factors and onset of multiple sclerosis. Eur Neurol. 2009;62(3):130-136. https://doi.org/10.1159/000226428
  34. Artemiadis AK, Anagnostouli MC, Alexopoulos EC. Stress as a risk factor for multiple sclerosis onset or relapse: a systematic review. Neuroepidemiology. 2011;36(2):109-120. https://doi.org/10.1159/000323953
  35. Burns MN, Nawacki E, Kwasny MJ, Pelletier D, Mohr DC. Do positive or negative stressful events predict the development of new brain lesions in people with multiple sclerosis? Psychol Med. 2014;44(2):349-359. https://doi.org/10.1017/S0033291713000755
  36. Mohr DC, Goodkin DE, Bacchetti P, Boudewyn AC, Huang L, Marrietta P, Cheuk W, Dee B. Psychological stress and the subsequent appearance of new brain MRI lesions in MS. Neurology. 2000;55(1):55-61. https://doi.org/10.1212/wnl.55.1.55
  37. Lebrun C, Bensa C, Debouverie M, De Seze J, Wiertlievski S, Brochet B, Clavelou P, Brassat D, Labauge P, Roullet E; CFSEP. Unexpected multiple sclerosis: Follow-up of 30 patients with magnetic resonance imaging and clinical conversion profile. J Neurol Neurosurg Psychiatry. 2008;79(2):195-198. https://doi.org/10.1136/jnnp.2006.108274
  38. Calvo-Barreiro L, Eixarch H, Montalban X, Espejo C. Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis. Autoimmun Rev. 2018;17(2):165-174. https://doi.org/10.1016/j.autrev.2017.11.019
  39. Probstel AK, Baranzini SE. The role of the gut microbiome in multiple sclerosis risk and progression: towards characterization of the «MS Microbiome». Neurotherapeutics. 2018;15(1):126-134. https://doi.org/10.1007/s13311-017-0587-y
  40. Rolla S, Bardina V, Ferrocino I, De Mercanti S, Ferraro M, Cianflone A, Lanzillo R, Durelli L, Cocolin LS, Clerico M. Gut microbiota alteration in Clinically Isolated Syndrome: a pilot study. Mult Scler. 2017;23(3):680-975. https://doi.org/10.1177/1352458517731285
  41. Gurevich KG, Nikityuk DB, Nikonov EL, Zaborova VA, Veselova LV, Zolnikova OY. The role of probiotics and microbiota in digestion, nutrient and hormone metabolism, and hormonal background maintenance. Profilakticheskaya meditsina. 2018;21(3):45-50. (In Russ.) https://doi.org/10.17116/profmed201821345
  42. Wagley S, Bokori-Brown M, Morcrette H, Malaspina A, D’Arcy C, Gnanapavan S, Lewis N, Popoff MR, Raciborska D, Nicholas R, Turner B, Titball RW. Evidence of Clostridium perfringens epsilon toxin associated with multiple sclerosis. Mult Scler. 2019;25(5):653-660. https://doi.org/10.1177/1352458518767327
  43. Boyanova L. Stress hormone epinephrine (adrenaline) and norepinephrine (noradrenaline) effects on the anaerobic bacteria. Anaerobe. 2017;44:13-19. https://doi.org/10.1016/j.anaerobe.2017.01.003
  44. Rumah KR, Vartanian TK, Fischetti VA. Oral multiple sclerosis drugs inhibit the in vitro growth of epsilon toxin producing gut bacterium, clostridium perfringens. Front Cell Infect Microbiol. 2017;7:11. https://doi.org/10.3389/fcimb.2017.00011
  45. Linden JR, Ma Y, Zhao B, Harris JM, Rumah KR, Schaeren-Wiemers N, Vartanian T. Clostridium perfringens epsilon toxin causes selective death of mature oligodendrocytes and central nervous system demyelination. MBio. 2015;6(3):02513. https://doi.org/10.1128/mBio.02513-14
  46. Nijhuis LE, Olivier BJ, Dhawan S, Hilbers FW, Boon L, Wolkers MC, Samsom JN, de Jonge WJ. Adrenergic β2 receptor activation stimulates antiinflammatory properties of dendritic cells in vitro. PLoS One. 2014;9(1):85086. https://doi.org/10.1371/journal.pone.0085086
  47. Takenaka MC, Araujo LP, Maricato JT, Nascimento VM, Guereschi MG, Rezende RM, Quintana FJ, Basso AS. Norepinephrine controls effector T Cell differentiation through β2-adrenergic receptor-mediated inhibition of NF-κB and AP-1 in dendritic cells. J Immunol. 2016;196(2):637-644. https://doi.org/10.4049/jimmunol.1501206
  48. Manni M, Granstein RD, Maestroni G. β2-Adrenergic agonists bias TLR-2 and NOD2 activated dendritic cells towards inducing an IL-17 immune response. Cytokine. 2011;55(3):380-386. https://doi.org/10.1016/j.cyto.2011.05.013
  49. Sanders VM, Baker RA, Ramer-Quinn DS, Kasprowicz DJ, Fuchs BA, Street NE. Differential expression of the beta2-adrenergic receptor by Th1 and Th2 clones: implications for cytokine production and B cell help. J Immunol. 1997;158(9):4200-4210.
  50. Sanders VM, Straub RH. Norepinephrine, the beta-adrenergic receptor, and immunity. Brain Behav Immun. 2002;16(4):290-332. https://doi.org/10.1006/brbi.2001.0639
  51. Pilipović I, Vujnović I, Stojić-Vukanić Z, Petrović R, Kosec D, Nacka-Aleksić M, Jasnić N, Leposavić G. Noradrenaline modulates CD4+ T cell priming in rat experimental autoimmune encephalomyelitis: a role for the α1-adrenoceptor. Immunol Res. 2019;67(2-3):223-240. https://doi.org/10.1007/s12026-019-09082-y
  52. Cosentino M, Zaffaroni M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Ghezzi A, Frigo G. Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients: effect of cell stimulation and possible relevance for activation-induced apoptosis. J Neuroimmunol. 2002;133(1-2):233-240. https://doi.org/10.1016/s0165-5728(02)00372-7
  53. Cosentino M, Zaffaroni M, Ferrari M, Marino F, Bombelli R, Rasini E, Frigo G, Ghezzi A, Comi G, Lecchini S. Interferon-gamma and interferon-beta affect endogenous catecholamines in human peripheral blood mononuclear cells: implications for multiple sclerosis. J Neuroimmunol. 2005;162:112-121. https://doi.org/10.1016/j.jneuroim.2005.01.019
  54. Benson CA, Wong G, Tenorio G, Baker GB, Kerr BJ. The MAO inhibitor phenelzine can improve functional outcomes in mice with established clinical signs in experimental autoimmune encephalomyelitis (EAE). Behav Brain Res. 2013;252:302-311. https://doi.org/10.1016/j.bbr.2013.06.019
  55. Melnikov MV, Rogovskii VS, Sviridova AA, Pashenkov MV, Boyko AN. Thy influence of norepinephrine on the functioning of Th17-cells in multiple sclerosis. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova. 2019;119(5):58-59. (In Russ)
  56. Melnikov M, Sviridova A, Rogovskii V, Boyko A, Pashenkov M. The influence of catecholamines on Th17-immune response in multiple sclerosis. Multiple Sclerosis Journal. 2019;25(2):835-836. https://doi.org/10.1177/1352458519868081
  57. Oleskin AV, Shenderov BA, Rogovsky VS. Role of neurochemicals in the interaction between the microbiota and the immune and the nervous system of the host organism. Probiotics Antimicrob Proteins. 2017:1-20. https://doi.org/10.1007/s12602-017-9262-1
  58. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693(Pt B):128-133. https://doi.org/10.1016/j.brainres.2018.03.015
  59. Sudo N. Biogenic amines: signals between commensal microbiota and gut physiology. Front Endocrinol (Lausanne). 2019;10:504. https://doi.org/10.3389/fendo.2019.00504
  60. Clarke MB, Hughes DT, Zhu C, Boedeker EC, Sperandio V. The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci USA. 2006;103(27):10420-10425. https://doi.org/10.1073/pnas.0604343103
  61. Lukic I, Getselter D, Ziv O, Oron O, Reuveni E, Koren O, Elliott E. Antidepressants affect gut microbiota and Ruminococcus flavefaciens is able to abolish their effects on depressive-like behavior. Transl Psychiatry. 2019;9(1):133. https://doi.org/10.1038/s41398-019-0466-x
  62. Werbner M, Barsheshet Y, Werbner N, Zigdon M, Averbuch I, Ziv O, Brant B, Elliot E, Gelberg S, Titelbaum M, Koren O, Avni O. Social-stress-responsive microbiota induces stimulation of self-reactive effector T helper cells. mSystems. 2019;4(4):e00292-18. https://doi.org/10.1128/mSystems.00292-18
  63. Lyte M, Arulanandam BP, Frank CD. Production of Shiga-like toxins by Escherichia coli O157:H7 can be influenced by the neuroendocrine hormone norepinephrine. J Lab Clin Med. 1996;128(4):392-398. https://doi.org/10.1016/S0022-2143(96)80011-4
  64. Sandrini S, Aldriwesh M, Alruways M, Freestone P. Microbial endocrinology: host-bacteria communication within the gut microbiome. J Endocrinol. 2015;225(2):21-34. https://doi.org/10.1530/JOE-14-0615
  65. Green BT, Lyte M, Kulkarni-Narla A, Brown DR. Neuromodulation of enteropathogen internalization in Peyer’s patches from porcine jejunum. J Neuroimmunol. 2003;141(1-2):74-82. https://doi.org/10.1016/s0165-5728(03)00225-x
  66. Lyte M, Vulchanova L, Brown DR. Stress at the intestinal surface: catecholamines and mucosa-bacteria interactions. Cell Tissue Res. 2011;343(1):23-32. https://doi.org/10.1007/s00441-010-1050-0
  67. Oleskin AV, Shenderov BA. Neuromodulatory effects and targets of the SCFAs and gasotransmitters produced by the human symbiotic microbiota. Microb Ecol Health Dis. 2016;27:30971. https://doi.org/10.3402/mehd.v27.30971
  68. Bartley A, Yang T, Arocha R, Malphurs WL, Larkin R, Magee KL, Vickroy TW, Zubcevic J. Increased abundance of lactobacillales in the colon of beta-adrenergic receptor knock out mouse is associated with increased gut bacterial production of short chain fatty acids and reduced IL17 expression in circulating CD4(+) immune cells. Front Physiol. 2018;9:1593. https://doi.org/10.3389/fphys.2018.01593
  69. Freestone PP, Haigh RD, Lyte M. Blockade of catecholamine-induced growth by adrenergic and dopaminergic receptor antagonists in Escherichia coli O157:H7, Salmonella enterica and Yersinia enterocolitica. BMC Microbiol. 2007;7:8. https://doi.org/10.1186/1471-2180-7-8
  70. Miller DH, Chard DT, Ciccarelli O. Clinically isolated syndromes. Lancet Neurol. 2012;11:157-169. https://doi.org/10.1016/S1474-4422(11)70274-5
  71. Fisniku LK, Brex PA, Altmann DR, Miszkiel KA, Benton CE, Lanyon R, Thompson AJ, Miller DH. Disability and T2 MRI lesions: A 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain. 2008;131:808-817. https://doi.org/10.1093/brain/awm329
  72. Okuda DT, Siva A, Kantarci O, Inglese M, Katz I, Tutuncu M, Keegan BM, Donlon S, Hua le H, Vidal-Jordana A, Montalban X, Rovira A, Tintoré M, Amato MP, Brochet B, de Seze J, Brassat D, Vermersch P, De Stefano N, Sormani MP, Pelletier D, Lebrun C; Radiologically Isolated Syndrome Consortium (RISC); Club Francophone de la Sclérose en Plaques (CFSEP). Radiologically isolated syndrome: 5-year risk for an initial clinical event. PLoS One. 2014;9(3):90509. https://doi.org/10.1371/journal.pone.0090509
  73. Boyko AN, Konovalova OE, Kabaeva AR, Sviridova AA, Popova EV, Melnikov MV. Influence of add-on therapy with antidepressants to high-dose interferons-beta on-clinico-MRI activity of multiple sclerosis with relapses. Zhurnal Nevrologii i Psihiatrii im. S.S. Korsakova. 2019;119(5):34-35. (In Russ.)
  74. Habek M, Crnošija L, Lovrić M, Junaković A, Krbot Skorić M, Adamec I. Sympathetic cardiovascular and sudomotor functions are frequently affected in early multiple sclerosis. Clin Auton Res. 2016;26(6):385-393. https://doi.org/10.1007/s10286-016-0370-x
  75. Krbot Skorić M, Crnošija L, Gabelić T, Barun B, Adamec I, Junaković A, Pavičić T, Ruška B, Habek M. Autonomic symptom burden can predict disease activity in early multiple sclerosis. Mult Scler Relat Disord. 2019;28:250-255. https://doi.org/10.1016/j.msard.2019.01.005

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.