The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Atkova E.L.

Krasnov Research Institute of Eye Diseases

Krakhovetskiy N.N.

Krasnov Research Institute of Eye Diseases

Fokina N.D.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Murakhovskaya Yu.K.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Kulish K.K.

Krasnov Research Institute of Eye Diseases

Avagyan A.S.

Krasnov Research Institute of Eye Diseases

Smirnova N.S.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Pharmacological prevention of fibrosis in dacryosurgery

Authors:

Atkova E.L., Krakhovetskiy N.N., Fokina N.D., Murakhovskaya Yu.K., Kulish K.K., Avagyan A.S., Smirnova N.S.

More about the authors

Journal: Russian Annals of Ophthalmology. 2024;140(2‑2): 180‑189

Read: 1790 times


To cite this article:

Atkova EL, Krakhovetskiy NN, Fokina ND, Murakhovskaya YuK, Kulish KK, Avagyan AS, Smirnova NS. Pharmacological prevention of fibrosis in dacryosurgery. Russian Annals of Ophthalmology. 2024;140(2‑2):180‑189. (In Russ.)
https://doi.org/10.17116/oftalma2024140022180

Recommended articles:
Perioperative prevention of bleeding in glaucoma surgery. Russian Annals of Ophthalmology. 2024;(5):118-124
Surgical treatment of perianal abscess and fistula-in-ano in neonates and infa­nts. Piro­gov Russian Journal of Surgery. 2024;(11):46-53
Long-term outcomes of lapa­roscopic inguinal hernia repair. Piro­gov Russian Journal of Surgery. 2024;(12):67-73
Clinical and Ultrasound Semiotics of Vari­cose Vein Recu­rrence. Journal of Venous Diso­rders. 2025;(1):28-36
Pathogenesis of fibrosis deve­lopment in ovarian endo­metriosis. Russian Journal of Archive of Pathology. 2025;(2):73-78

References:

  1. West JM. A Window Resection of the Nasal Duct in Cases of Stenosis. Trans Am Ophthalmol Soc. 1910;12(Pt 2):654-658. 
  2. Jawaheer L, MacEwen CJ, Anijeet D. Endonasal versus External Dacryocystorhinostomy for Nasolacrimal Duct Obstruction. Cochrane Database Syst Rev. 2017;2017(2):CD007097. https://doi.org/10.1002/14651858.CD007097.pub3
  3. Dolman PJ. Comparison of External Dacryocystorhinostomy with Nonlaser Endonasal Dacryocystorhinostomy. Ophthalmology. 2003;110(1):78-84.  https://doi.org/10.1016/S0161-6420(02)01452-5
  4. Baek JS, Jeong SH, Lee JH, Choi HS, Kim SJ, Jang JW. Cause and Management of Patients with Failed Endonasal Dacryocystorhinostomy. Clin Exp Otorhinolaryngol. 2017;10(1):85-90.  https://doi.org/10.21053/ceo.2016.00192
  5. Zhukov OV, At’kova EL, Krakhovetskiy NN. Balloon dacryoplasty in the treatment of recurrent dacryocystitis. Oftal`mologicheskie vedomosti. 2019;12(4):67-72. (In Russ.). https://doi.org/10.17816/OV17696
  6. At’kova EL, Krakhovetskiy NN, Zhukov OV. Analysis of the causes of relapse after endonasal endoscopic dacryocystorhinostomy. Sovremennye tekhnologii v oftal’mologii. 2020;4(35):294-295. (In Russ.). https://doi.org/10.25276/2312-4911-2020-4-294-295
  7. Hodgson N, Bratton E, Whipple K, Priel A, Oh S-R, Fante RG, Kikkawa DO, Korn BS. Outcomes of Endonasal Dacryocystorhinostomy without Mucosal Flap Preservation. Ophthal Plast Reconstr Surg. 2014;30(1):24-27.  https://doi.org/10.1097/IOP.0b013e3182a7502e
  8. Kansu L, Aydin E, Avci S, Kal A, Gedik S. Comparison of Surgical Outcomes of Endonasal Dacryocystorhinostomy with or without Mucosal Flaps. Auris, Nasus, Larynx. 2009;36(5):555-559.  https://doi.org/10.1016/j.anl.2009.01.005
  9. Khalifa MA, Ragab SM, Saafan ME, El-Guindy AS. Endoscopic Dacryocystorhinostomy with Double Posteriorly Based Nasal and Lacrimal Flaps: A Prospective Randomized Controlled Trial. Otolaryngol Head Neck Surg. 2012;147(4):782-787.  https://doi.org/10.1177/0194599812447759
  10. Zloto O, Koval T, Yakirevich A, Ben Simon GJ, Weissman A, Ben Artsi E, Ben Shoshan J, Priel A. Endoscopic Dacryocystorhinostomy with and without Mucosal Flap — Is There Any Difference? Eye. 2020;34(8):1449-1453. https://doi.org/10.1038/s41433-019-0716-4
  11. Yu B, Xia Y, Sun J-Y, Ye Q, Tu Y-H, Zhou G-M, Wu W-C. Surgical Outcomes in Acute Dacryocystitis Patients Undergoing Endonasal Endoscopic Dacryocystorhinostomy with or without Silicone Tube Intubation. Int J Ophthalmol. 2021;14(6):844-848.  https://doi.org/10.18240/ijo.2021.06.08
  12. Phelps PO, Abariga SA, Cowling BJ, Selva D, Marcet MM. Antimetabolites as an Adjunct to Dacryocystorhinostomy for Nasolacrimal Duct Obstruction. Cochrane Database Syst Rev. 2020;4(4):CD012309. https://doi.org/10.1002/14651858.CD012309.pub2
  13. Sousa TTS, Schellini SA, Meneghim RLFS, Cataneo AJM. Intra-Operative Mitomycin-C as Adjuvant Therapy in External and Endonasal Dacryocystorhinostomy: Systematic Review and Meta-Analysis. Ophthalmol Ther. 2020;9(2):305-319.  https://doi.org/10.1007/s40123-020-00253-x
  14. At’kova EL, Ramenskaya GV, Root AO, Krakhovetskiy NN, Yartsev VD, Yartsev SD, Petukhov AE, Shokhin IE. Mitomycin c after endoscopic endonasal dacryocystorhinostomy. Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2017;133(5):16-23. (In Russ.). https://doi.org/10.17116/oftalma2017133516-22
  15. Kim KR, Song H-Y, Shin JH, Kim JH, Choi EK, Yang Z-Q, Lee YJ. Efficacy of Mitomycin-C Irrigation after Balloon Dacryocystoplasty. J Vasc Interv Radiol. 2007;18(6):757-762.  https://doi.org/10.1016/j.jvir.2007.04.001
  16. Sinha MK, Bajaj MS, Pushker N, Ghose S, Chandra M. Efficacy of Probing with Mitomycin-C in Adults with Primary Acquired Nasolacrimal Duct Obstruction. J Ocul Pharmacol Ther. 2013;29(3):353-355.  https://doi.org/10.1089/jop.2012.0083
  17. Dehghani N, Fouladivanda MR, Ghobadifar MA, Safshekan-Esfahani G, Akbarzadeh A. Nine-Month Follow-up Results of Treatment for Nasolacrimal Duct Obstruction by Probing with Adjunctive Mitomycin C in Adults: A Prospective Randomized Placebo-Controlled Trial. Chonnam Med J. 2015;51(1):19-25.  https://doi.org/10.4068/cmj.2015.51.1.19
  18. Masoomian B, Eshraghi B, Latifi G, Esfandiari H. Efficacy of Probing Adjunctive with Low-Dose Mitomycin-C Irrigation for the Treatment of Epiphora in Adults with Nasolacrimal Duct Stenosis. Taiwan J Ophthalm. 2021; 11(3):287-291.  https://doi.org/10.4103/tjo.tjo_25_20
  19. Bakri K, Jones NS, Downes R, Sadiq SA. Intraoperative Fluorouracil in Endonasal Laser Dacryocystorhinostomy. Arch Otolaryngol Head Neck Surg. 2003;129(2):233-235.  https://doi.org/10.1001/archotol.129.2.233
  20. Watts P, Ram AR, Nair R, Williams H. Comparison of External Dacryocystorhinostomy and 5-Fluorouracil Augmented Endonasal Laser Dacryocystorhinostomy. A Retrospective Review. Ind J Ophthalmol. 2001;49(3): 169-172. 
  21. Costa MN, Marcondes AM, Sakano E, Kara-José N. Endoscopic Study of the Intranasal Ostium in External Dacryocystorhinostomy Postoperative. Influence of Saline Solution and 5-Fluorouracil. Clinics. 2007;62(1):41-46.  https://doi.org/10.1590/s1807-59322007000100007
  22. Yartsev V, Gabashvili A, Atkova E, Melnikov P, Nesterova T. Study of Dosage-Dependent Effects of Cytostatic Drugs Using a Fibroblast Cell Culture of the Human Nasal Mucosa. Int Arch Otorhinolaryngol. 2020;24(2): e206-e210. https://doi.org/10.1055/s-0039-1697996
  23. Kang TS, Won YK, Kim JY, Kim KN, Lee SB. Efficacy of Triamcinolone-Soaked Nasal Packing on Endoscopic Dacryocystorhinostomy. Ophthal Plast Reconstr Surg. 2021;37(3S):S44-S47.  https://doi.org/10.1097/IOP.0000000000001791
  24. Chen I, Ayalon H, Drabkin E, Cohen O, Peleg U. Introduction of Steroid Absorbed Spongostan in Endoscopic Dacryocystorhinostomy Improves Success Rates. Ophthal Plast Reconstr Surg. 2022;38(5):444-447.  https://doi.org/10.1097/IOP.0000000000002156
  25. Janjua TA, Nafees A ul A, Akbar B, Mirza R, Parveen S, Tarrar MS. Efficacy and Safety of Adjunctive Triamcinolone in Nasal Endoscopic Dacryocystorhinostomy. PAFMJ. 2023;73(2):355-359.  https://doi.org/10.51253/pafmj.v73iSUPPL-2.750
  26. Rikhtehgar MH, Rikhtehgar MJ, Hassanpour K, Aletaha M, Veisi A. Clinical Outcomes of Endoscopic Dacryocystorhinostomy without Preserving Mucosal Flaps in Combination with Silicone Stent and Steroid-Soaked Gelfoam. J Fr Ophtalmol. 2024;47(2):104013. https://doi.org/10.1016/j.jfo.2023.07.018
  27. Naik VN, Kumar V. Intraoperative Injection of Triamcinolone Acetonide in External Dacryocystorhinostomy. Int J Ophthalmol Eye Sci. 2020;424-428.  https://doi.org/10.19070/2332-290X-2000086
  28. Wu W, Cannon PS, Yan W, Tu Y, Selva D, Qu J. Effects of Merogel Coverage on Wound Healing and Ostial Patency in Endonasal Endoscopic Dacryocystorhinostomy for Primary Chronic Dacryocystitis. Eye. 2011;25(6): 746-753.  https://doi.org/10.1038/eye.2011.44
  29. At’kova EL, Root AO. Therapeutic methods of scar prevention at the site of endonasal dacryocystorhinostomy. Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2015;131(5):68-73. (In Russ.). https://doi.org/10.17116/oftalma2015131568-73
  30. Yu B, Tu Y, Zhou G, Shi J, Wu E, Wu W. Self-Cross-Linked Hyaluronic Acid Hydrogel in Endonasal Endoscopic Dacryocystorhinostomy: A Randomized, Controlled Trial. J Craniofac Surg. 2021;32(5):1942-1945. https://doi.org/10.1097/SCS.0000000000007416
  31. Fileva LV. Prevention of scarring of a dacryorhinostomy. Rossijskaya otorinolaringologiya. 2020;19(3(106)):37-40. (In Russ.). https://doi.org/10.18692/1810-4800-2020-3-37-40
  32. Li J, Wang J, Sun C. Efficacy of Hyaluronic Acid in Endoscopic Dacryocystorhinostomy: A Systematic Review and Meta-Analysis. Am J Rhinol Allergy. 2023;37(1):102-109.  https://doi.org/10.1177/19458924221126356
  33. Kean T, Thanou M. Biodegradation, Biodistribution and Toxicity of Chitosan. Adv Drug Deliv Rev. 2010;62(1):3-11.  https://doi.org/10.1016/j.addr.2009.09.004
  34. Zhou J-C, Zhang J-J, Zhang W, Ke Z-Y, Zhang B. Efficacy of Chitosan Dressing on Endoscopic Sinus Surgery: A Systematic Review and Meta-Analysis. Eur Arch Otorhinolaryngol. 2017;274(9):3269-3274. https://doi.org/10.1007/s00405-017-4584-x
  35. Chung Y-J, An S-Y, Yeon J-Y, Shim WS, Mo J-H. Effect of a Chitosan Gel on Hemostasis and Prevention of Adhesion after Endoscopic Sinus Surgery. Clin Expl Otorhinolaryngol. 2016;9(2):143-149.  https://doi.org/10.21053/ceo.2015.00591
  36. Liu J, Zeng Q, Ke X, Yang Y, Hu G, Zhang X. Influence of Chitosan-Based Dressing on Prevention of Synechia and Wound Healing after Endoscopic Sinus Surgery: A Meta-Analysis. Am J Rhinol Allergy. 2017;31(6):401-405.  https://doi.org/10.2500/ajra.2017.31.4469
  37. Winebrake JP, Mahrous A, Kacker A, Tabaee A, Levinger JI, Pearlman AN, Stewart MG, Lelli GJ. Postoperative Bioresorbable Chitosan-Based Dressing for Endoscopic Middle Meatal Dacryocystorhinostomy With Balloon Dilation. Ear Nose Throat J. 2021;100(6):425-429.  https://doi.org/10.1177/0145561319866822
  38. Aznabaev MT, Valieva GN, Fattaxov BT. Drenazh dlya vosstanovleniya putej ottoka sleznoj zhidkosti. Patent na poleznuyu model` №51870 U1 Rossijskaya Federaciya, MPK A61F 9/00. Opubl. 10.03.2006. №2005127277/22. Accessed March 13, 2024. (In Russ.). https://www.fips.ru/cdfi/fips.dll/ru?ty=29&docid=51870&ki=PM
  39. Aznabayev MT, Munirova LN. To the prevention of recurrent dacryocystitis after surgical treatment. Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2008;124(3):42-43. (In Russ.).
  40. At’kova EL, Reyn DA, Yartsev VD, Subbot AM. Influence of TGF-β cytokine and a number of other biochemical factors on regenerative process. Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2017;133(4):89-96. (In Russ.). https://doi.org/10.17116/oftalma2017133489-96
  41. Lee JK, Kim TH. Changes in Cytokines in Tears after Endoscopic Endonasal Dacryocystorhinostomy for Primary Acquired Nasolacrimal Duct Obstruction. Eye. 2014;28(5):600-607.  https://doi.org/10.1038/eye.2014.33
  42. At’kova EL, Subbot AM, Krakhovetskiy NN, Yartsev VD, Rein DA. Influence of fibrosis mediators on the outcomes of endoscopic endonasal dacryocystorhinostomy. Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2019;135(4):19-26. (In Russ.). https://doi.org/10.17116/oftalma201913504119
  43. Wang D, Xiang N, Hu WK, Luo B, Xiao XT, Zhao Y, Li B, Liu R. Detection and Analysis of Inflammatory Cytokines in Tears of Patients with Lacrimal Duct Obstruction. Indian J Med Res. 2021;154(6):888-894.  https://doi.org/10.4103/ijmr.IJMR_1435_19
  44. Bielecki P, Gindzienska-Sieskiewicz E, Reszeć J, Piszczatowski B, Rogowski M, Kowal-Bielecka O, Kowal K, Sieskiewicz A. Expression of LIGHT/TNFSF14 and Its Receptors, HVEM and LTβR, Correlates with the Severity of Fibrosis in Lacrimal Sacs from Patients with Lacrimal Duct Obstruction. Ophthalmol Ther. 2021;10(1):63-74.  https://doi.org/10.1007/s40123-020-00320-3
  45. Stahnke T, Kowtharapu BS, Stachs O, Schmitz K-P, Wurm J, Wree A, Guthoff RF, Hovakimyan M. Suppression of TGF-β Pathway by Pirfenidone Decreases Extracellular Matrix Deposition in Ocular Fibroblasts in Vitro. PloS One. 2017;12(2):e0172592. https://doi.org/10.1371/journal.pone.0172592
  46. Shin J-M, Park J-H, Park I-H, Lee H-M. Pirfenidone Inhibits Transforming Growth Factor Β1-Induced Extracellular Matrix Production in Nasal Polyp-Derived Fibroblasts. Am J Rhinol Allergy. 2015;29(6):408-413.  https://doi.org/10.2500/ajra.2015.29.4221
  47. Tao Y, Chen Q, Zhao C, Yang X, Cun Q, Yang W, Zhang Y, Zhu Y, Zhong H. The in Vitro Anti-Fibrotic Effect of Pirfenidone on Human Pterygium Fibroblasts Is Associated with down-Regulation of Autocrine TGF-β and MMP-1. Int J Med Sci. 2020;17(6):734-744.  https://doi.org/10.7150/ijms.43238
  48. Gao C, Cao X, Huang L, Bao Y, Li T, Di Y, Wu L, Song Y. Pirfenidone Alleviates Choroidal Neovascular Fibrosis through TGF-β/Smad Signaling Pathway. J Ophthalmol. 2021;2021:8846708. https://doi.org/10.1155/2021/8846708
  49. Jung KI, Park CK. Pirfenidone Inhibits Fibrosis in Foreign Body Reaction after Glaucoma Drainage Device Implantation. Drug Des Devel Therapy. 2016;10:1477-1488. https://doi.org/10.2147/DDDT.S99957
  50. At’kova EL, Fedorov AA, Astrakhantsev AF, Rein DA, Krakhovetskiy NN. Experimental investigation of the efficacy of pirfenidone in prevention of ostium cicatricial closure after dacryocystorhinostomy. Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2021;137(5):31-39. (In Russ.). https://doi.org/10.17116/oftalma202113705131
  51. Yang S, Wang X, Xiao W, Xu Z, Ye H, Sha X, Yang H. Dihydroartemisinin Exerts Antifibrotic and Anti-Inflammatory Effects in Graves’ Ophthalmopathy by Targeting Orbital Fibroblasts. Front Endocrinol. 2022;13:891922. https://doi.org/10.3389/fendo.2022.891922
  52. Liu H-R, Xia Z-Y, Wang N-L. Sulforaphane Modulates TGFβ2-Induced Conjunctival Fibroblasts Activation and Fibrosis by Inhibiting PI3K/Akt Signaling. Int J Ophthalmol. 2020;13(10):1505-1511. https://doi.org/10.18240/ijo.2020.10.01
  53. Lan C, Liu G, Huang L, Wang X, Tan J, Wang Y, Fan N, Zhu Y, Yu M, Liu X. Forkhead Domain Inhibitor-6 Suppresses Corneal Neovascularization and Subsequent Fibrosis After Alkali Burn in Rats. Invest Ophthalmol Vis Sci. 2022;63(4):14.  https://doi.org/10.1167/iovs.63.4.14
  54. Wei Y-H, Liao S-L, Wang S-H, Wang C-C, Yang C-H. Simvastatin and ROCK Inhibitor Y-27632 Inhibit Myofibroblast Differentiation of Graves’ Ophthalmopathy-Derived Orbital Fibroblasts via RhoA-Mediated ERK and P38 Signaling Pathways. Front Endocrinol. 2020;11:607968. https://doi.org/10.3389/fendo.2020.607968
  55. Hutchings KM, Lisabeth EM, Rajeswaran W, Wilson MW, Sorenson RJ, Campbell PL, Ruth JH, Amin A, Tsou P-S, Leipprandt JR, Olson SR, Wen B, Zhao T, Sun D, Khanna D, Fox DA, Neubig RR, Larsen SD. Pharmacokinetic Optimitzation of CCG-203971: Novel Inhibitors of the Rho/MRTF/SRF Transcriptional Pathway as Potential Antifibrotic Therapeutics for Systemic Scleroderma. Bioorg Med Chem Lett. 2017;27(8):1744-1749. https://doi.org/10.1016/j.bmcl.2017.02.070
  56. Zhang Z, Liu X, Shen Z, Quan J, Lin C, Li X, Hu G. Endostatin in Fibrosis and as a Potential Candidate of Anti-Fibrotic Therapy. Drug Deliv. 2021; 28(1):2051-2061. https://doi.org/10.1080/10717544.2021.1983071
  57. Kim S, Gates BL, Chang M, Pinkerton KE, Van Winkle L, Murphy CJ, Leonard BC, Demokritou P, Thomasy SM. Transcorneal Delivery of Topically Applied Silver Nanoparticles Does Not Delay Epithelial Wound Healing. NanoImpact. 2021;24:100352. https://doi.org/10.1016/j.impact.2021.100352
  58. Swarup A, Grosskopf AK, Stapleton LM, Subramaniam VR, Li B, Weissman IL, Appel EA, Wu AY. PNP Hydrogel Prevents Formation of Symblephara in Mice After Ocular Alkali Injury. Trans Vis Sci Technol. 2022;11(2):31.  https://doi.org/10.1167/tvst.11.2.31
  59. Zahir-Jouzdani F, Soleimani M, Mahbod M, Mottaghitalab F, Vakhshite F, Arefian E, Shahhoseini S, Dinarvand R, Atyabi F. Corneal Chemical Burn Treatment through a Delivery System Consisting of TGF-Β1 siRNA: In Vitro and in Vivo. Drug Deliv Transl Res. 2018;8(5):1127-1138. https://doi.org/10.1007/s13346-018-0546-0
  60. Sanghani A, Kafetzis KN, Sato Y, Elboraie S, Fajardo-Sanchez J, Harashima H, Tagalakis AD, Yu-Wai-Man C. Novel PEGylated Lipid Nanoparticles Have a High Encapsulation Efficiency and Effectively Deliver MRTF-B siRNA in Conjunctival Fibroblasts. Pharmaceutics. 2021;13(3):382.  https://doi.org/10.3390/pharmaceutics13030382
  61. Zahir-Jouzdani F, Khonsari F, Soleimani M, Mahbod M, Arefian E, Heydari M, Shahhosseini S, Dinarvand R, Atyabi F. Nanostructured Lipid Carriers Containing Rapamycin for Prevention of Corneal Fibroblasts Proliferation and Haze Propagation after Burn Injuries: In Vitro and in Vivo. J Cell Physiol. 2019;234(4):4702-4712. https://doi.org/10.1002/jcp.27243
  62. Amador C, Shah R, Ghiam S, Kramerov AA, Ljubimov AV. Gene Therapy in the Anterior Eye Segment. Curr Gene Ther. 2022;22(2):104-131.  https://doi.org/10.2174/1566523221666210423084233
  63. Hardee CL, Arévalo-Soliz LM, Hornstein BD, Zechiedrich L. Advances in Non-Viral DNA Vectors for Gene Therapy. Genes. 2017;8(2):65.  https://doi.org/10.3390/genes8020065
  64. Sharma G, Sharma AR, Bhattacharya M, Lee S-S, Chakraborty C. CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Mol Ther. 2021;29(2):571-586.  https://doi.org/10.1016/j.ymthe.2020.09.028
  65. Tripathi R, Sinha NR, Kempuraj D, Balne PK, Landreneau JR, Juneja A, Webel AD, Mohan RR. Evaluation of CRISPR/Cas9 Mediated TGIF Gene Editing to Inhibit Corneal Fibrosis in Vitro. Exp Eye Res. 2022;220:109113. https://doi.org/10.1016/j.exer.2022.109113
  66. Ghafouri-Fard S, Abak A, Talebi SF, Shoorei H, Branicki W, Taheri M, Akbari Dilmaghani N. Role of miRNA and lncRNAs in Organ Fibrosis and Aging. Biomed Pharmacother. 2021;143:112132. https://doi.org/10.1016/j.biopha.2021.112132
  67. Zhao Z, Lin C-Y, Cheng K. siRNA- and miRNA-Based Therapeutics for Liver Fibrosis. Transl Res. 2019;214:17-29.  https://doi.org/10.1016/j.trsl.2019.07.007
  68. Sinha A, Bhattacharjee R, Bhattacharya B, Nandi A, Shekhar R, Jana A, Saha K, Kumar L, Patro S, Panda PK, Kaushik NK, Suar M, Verma SK. The Paradigm of miRNA and siRNA Influence in Oral-Biome. Biomed Pharmacother. 2023;159:114269. https://doi.org/10.1016/j.biopha.2023.114269
  69. Baran F, Kelly JP, Finn LS, Manning S, Herlihy E, Weiss AH. Evaluation and Treatment of Failed Nasolacrimal Duct Probing in Down Syndrome. J AAPOS. 2014;18(3):226-231.  https://doi.org/10.1016/j.jaapos.2013.12.018

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.