The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Eliseeva N.V.

Belgorod State National Research University

Ponomarenko I.V.

Belgorod State National Research University

Churnosov M.I.

Belgorod State National Research University

Study of the functional significance of polymorphic loci of the LOXL1 gene associated with glaucoma according to genome-wide studies (in silico analysis)

Authors:

Eliseeva N.V., Ponomarenko I.V., Churnosov M.I.

More about the authors

Journal: Russian Annals of Ophthalmology. 2021;137(5): 22‑30

Read: 1894 times


To cite this article:

Eliseeva NV, Ponomarenko IV, Churnosov MI. Study of the functional significance of polymorphic loci of the LOXL1 gene associated with glaucoma according to genome-wide studies (in silico analysis). Russian Annals of Ophthalmology. 2021;137(5):22‑30. (In Russ.)
https://doi.org/10.17116/oftalma202113705122

Recommended articles:
Perioperative prevention of bleeding in glaucoma surgery. Russian Annals of Ophthalmology. 2024;(5):118-124
The resu­lts of fistulizing glaucoma surgeries in pseudophackic patients. Russian Annals of Ophthalmology. 2025;(1):45-52
Electrophysiological methods in the diagnosis and moni­toring of glaucoma. Russian Annals of Ophthalmology. 2025;(4):102-109
Asso­ciation of inflammation and chro­nic fati­gue syndrome in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(9):79-87

References:

  1. Egorov EA. Nacional’noe rukovodstvo po glaukome: dlya praktikuyushchih vrachej [National Guidelines for Glaucoma: For Medical Practitioners]. Egorov Eds E.A., Astahov Yu.S., Erichev V.P. M.: GEOTAR-Media; 2015. (In Russ.).
  2. Eliseeva NV, Churnosov MI. Etiopathogenesis of primary open-angle glaucoma. Vestnik oftal’mologii. 2020;136(3):79-86 (In Russ.). https://doi.org/10.17116/oftalma202013603179
  3. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global Prevalence of Glaucoma and Projections of Glaucoma Burden through 2040: A Systematic Review and Meta-Analysis. Ophthalmology. 2014;121(11):2081-2090. https://doi.org/10.1016/j.ophtha.2014.05.013
  4. Liu Y, Allingham RR. Molecular genetics in glaucoma. Exper Eye Res. 2011; 93:331-339. 
  5. Brezhnev AYu, Baranov VI, Ivanov VP, Kuroedov AV. Genetics of pseudoexfoliative syndrome and pseudoexfoliative glaucoma: the role of LOXL1 gene polymorphisms. Glaukoma. 2012;(3):53-56. (In Russ.).
  6. Aboobakar IF, Allingham RR. Genetics of exfoliation syndrome and glaucoma. Int Ophthalmol Clin. 2014;54(4):43-56.  https://doi.org/10.1097/IIO.0000000000000042
  7. Tikunova EV, Churnosov MI. Genetic studies in primary open-angle glaucoma. Vestnik oftal’mologii. 2014;130(5):96-99. (In Russ.).
  8. Kirilenko MYu, Tikunova EB, Sirotina SS, Polonikov AV, Bushueva OYu, Churnosov MI. Study of associations of genetic polymorphisms of growth factors with the development of primary open-angle glaucoma. Vestnik oftal’mologii. 2017;133(3):9-15. (In Russ.) https://doi.org/10.17116/oftalma 201713339-15
  9. Tikunova E, Ovtcharova V, Reshetnikov E, et al. Genes of tumor necrosis factors and their receptors and the primary open angle glaucoma in the population of central Russia. Int J Ophthalmol. 2017;10(10):1490-1494.
  10. Sakurada Y, Mabuchi F. Genetic Risk Factors for Glaucoma and Exfoliation Syndrome Identified by Genome-wide Association Studies. Curr Neuropharmacol. 2018;16(7):933‐941.  https://doi.org/10.2174/1570159X15666170718142406
  11. Svinareva DI. The contribution of gene-gene interactions of polymorphic loci of matrix metalloproteinases to susceptibility to primary open-angle glaucoma in men. Nauchnyye rezul’taty biomeditsinskikh issledovaniy = Research Results in Biomedicine. 2020;6(1):63-77. (In Russ.). https://doi.org/10.18413/2658-6533-2020-6-1-0-6
  12. Eliseeva N, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. The LOXL1 gene polymorphisms candidate for exfoliation glaucoma are also associated with a risk for primary open-angle glaucoma in a Caucasian population of central Russia. Mol Vis. 2021;27:262-269. eCollection 2021.
  13. Starikova D, Ponomarenko I, Reshetnikov E, Dvornyk V, Churnosov M. Novel data about association of the functionally significant polymorphisms of the MMP-9 gene with exfoliation glaucoma in the Caucasian population of Central Russia [published online ahead of print, 2020 Oct 23]. Ophthalmic Res. 2020;10.1159/000512507. https://doi.org/10.1159/000512507
  14. Thorleifsson G, Magnusson KP, Sulem P, et al. Common sequence variants in the LOXL1 gene confer susceptibility to exfoliation glaucoma. Science. 2007;317:1397-1400.
  15. Nakano M, Ikeda Y, Tokuda Y, et al. Novel common variants and susceptible haplotype for exfoliation glaucoma specific to Asian population. Sci Rep. 2014;4:5340. https://doi.org/10.1038/srep05340
  16. Shiga Y, Akiyama M, Nishiguchi KM, et al. Genome-wide association study identifies seven novel susceptibility loci for primary open-angle glaucoma. Hum Mol Genet. 2018;27(8):1486-1496. https://doi.org/10.1093/hmg/ddy053
  17. Eliseeva NV, Churnosov MI. Genome-wide studies of primary open-angle glaucoma. Vestnik oftal’mologii. 2020;136(5):129-135. (In Russ.). https://doi.org/10.17116/oftalma2020136051129
  18. Aung T, Ozaki M, Mizoguchi T, et al. A common variant mapping to CACNA1A is associated with susceptibility to exfoliation syndrome [published correction appears in Nat Genet. 2015;47(6):689]. Nat Genet. 2015;47(4):387-392.  https://doi.org/10.1038/ng.3226
  19. Zagajewska K, Piątkowska M, Goryca K, et al. GWAS links variants in neuronal development and actin remodeling related loci with pseudoexfoliation syndrome without glaucoma. Exp Eye Res. 2018;168:138-148.  https://doi.org/10.1016/j.exer.2017.12.006
  20. Zanon-Moreno V, Zanon-Moreno L, Ortega-Azorin C, et al. Genetic polymorphism related to exfoliative glaucoma is also associated with primary open-angle glaucoma risk. Clin Exp Ophthalmol. 2015;43(1):26-30.  https://doi.org/10.1111/ceo.12367
  21. Chen L, Jia L, Wang N, et al. Evaluation of LOXL1 polymorphisms in exfoliation syndrome in a Chinese population. Mol Vis. 2009;15:2349-2357.
  22. Pasutto F, Zenkel M, Hoja U, et al. Pseudoexfoliation syndrome-associated genetic variants affect transcription factor binding and alternative splicing of LOXL1. Nat Commun. 2017;8:15466. https://doi.org/10.1038/ncomms15466
  23. Ponomarenko I, Reshetnikov E, Altuchova O, et al. Association of genetic polymorphisms with age at menarche in Russian women. Gene. 2019;(686): 228-236. 
  24. Ponomarenko I, Reshetnikov E, Polonikov A, et al. Candidate genes for age at menarche are associated with endometriosis. Reprod Biomed Online. 2020; 41(5):943-956.  https://doi.org/10.1016/j.rbmo.2020.04.016
  25. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4(7):1073-1081.
  26. Adzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nature Methods. 2010;7(4):248-249.  https://doi.org/10.1038/nmeth0410-248
  27. Ward LD, Kellis M. HaploReg v4: systematic mining of putative causal variants, cell types, regulators and target genes for human complex traits and disease. Nucleic Acids Res. 2016;44(D1):877-881. 
  28. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369(6509):1318-1330. https://doi.org/10.1126/science.aaz1776.
  29. Ponomarenko IV, Polonikov AV, Churnosov MI. Polymorphic LHCGR gene loci associated with the development of uterine fibroids. Akusherstvo i Ginekologiya = Obstetrics and Gynecology. 2018;10:86-91. (In Russ.). https://doi.org/10.18565/aig.2018.10.86-91
  30. Ponomarenko IV, Reshetnikov EA, Polonikov AV, Churnosov MI. The polymorphic locus rs314276 of the LIN28B gene is associated with the age of menarche in women of the Central Black Earth Region of Russia. Akusherstvo i Ginekologiya = Obstetrics and Gynecology. 2019;(2):98-104. (In Russ.). https://doi.org/10.18565/aig.2019.2.98-104
  31. Ponomarenko I, Reshetnikov E, Polonikov A, et al. Candidate genes for age at menarche are associated with endometrial hyperplasia. Gene. 2020;757: 144933. https://doi.org/10.1016/j.gene.2020.144933
  32. Ponomarenko I, Reshetnikov E, Polonikov A, et al. Candidate genes for age at menarche are associated with uterine leiomyoma. Front Genet. 2021;11: 512940. https://doi.org/10.3389/fgene.2020.512940
  33. Shiga Y, Akiyama M, Nishiguchi KM, et al. Genome-wide association study identifies seven novel susceptibility loci for primary open-angle glaucoma. Hum Mol Genet. 2018;27(8):1486-1496. https://doi.org/10.1093/hmg/ddy053
  34. Shen L, Walter S, Melles RB, Glymour MM, Jorgenson E. Diabetes Pathology and Risk of Primary Open-Angle Glaucoma: Evaluating Causal Mechanisms by Using Genetic Information. Am J Epidemiol. 2016;183(2):147-155.  https://doi.org/10.1093/aje/kwv204
  35. Rozpędek-Kamińska W, Wojtczak R, Szaflik JP, Szaflik J, Majsterek I. The Genetic and Endoplasmic Reticulum-Mediated Molecular Mechanisms of Primary Open-Angle Glaucoma. Int J Mol Sci. 2020;21(11):4171. https://doi.org/10.3390/ijms21114171
  36. Hauser MA, Aboobakar IF, Liu Y, et al. Genetic variants and cellular stressors associated with exfoliation syndrome modulate promoter activity of a lncRNA within the LOXL1 locus. Hum Mol Genet. 2015;24(22):6552‐6563. https://doi.org/10.1093/hmg/ddv347
  37. Svinareva DI, Churnosov MI. The role of metalloproteinases in the development of primary open-angle glaucoma. Vestnik oftal’mologii. 2020;136(4): 146-150. (In Russ.). https://doi.org/10.17116/oftalma2020136041146
  38. Schlötzer-Schrehardt U, Pasutto F, Sommer P, et al. Genotype-correlated expression of lysyl oxidase-like 1 in ocular tissues of patients with pseudoexfoliation syndrome/glaucoma and normal patients. Am J Pathol. 2008;173(6): 1724-1735. https://doi.org/10.2353/ajpath.2008.080535
  39. Panoutsopoulos AA, Gartaganis VS, Giannakopoulos MP, Goumas PD, Anastassiou ED, Gartaganis SP. Lysyl oxidase-like 1 polymorphisms in a southwestern Greek cataract population with pseudoexfoliation syndrome. Clin Ophthalmol. 2016;10:161‐166.  https://doi.org/10.2147/OPTH.S90789
  40. Yaz Y, Yıldırım N, Aydın Yaz Y, Çilingir O, Yüksel Z, Mutlu F. Three Single Nucleotide Polymorphisms of LOXL1’ in a Turkish Population with Pseudoexfoliation Syndrome and Pseudoexfoliation Glaucoma. Turk J Ophthalmol. 2018;48(5):215‐220.  https://doi.org/10.4274/tjo.83797
  41. Wu M, Zhu XY, Ye J. Associations of polymorphisms of LOXL1 gene with primary open-angle glaucoma: a meta-analysis based on 5,293 subjects. Mol Vis. 2015;21:165‐172. 
  42. Wiggs JL, Pasquale LR. Expression and regulation of LOXL1 and elastin-related genes in eyes with exfoliation syndrome. J Glaucoma. 2014;23(8 suppl 1):62‐63.  https://doi.org/10.1097/IJG.0000000000000124
  43. Schlötzer-Schrehardt U, Zenkel M. The role of lysyl oxidase-like 1 (LOXL1) in exfoliation syndrome and glaucoma. Exp Eye Res. 2019;189:107818. https://doi.org/10.1016/j.exer.2019.107818
  44. Sun M, Kraus WL. From Discovery to Function: The Expanding Roles of Long NonCoding RNAs in Physiology and Disease. Endocr Rev. 2015;36:25-64. 
  45. Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 2016;73:2491-2509.

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.