The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kurysheva N.I.

Oftal'mologicheskij tsentr Federal'nogo mediko-biologicheskogo agentstva, ul. Gamalei, 15, Moskva, Rossijskaja Federatsija, 123098

Lepeshkina L.V.

Ophthalmological Center of the Federal Medical-Biological Agency of the Russian Federation, A.I. Burnazyan Federal Medical and Biophysical Center of FMBA, 15 Gamalei St., Moscow, Russian Federation, 123098

Biomechanical properties of the cornea as predictors of the effectiveness of selective laser trabeculoplasty

Authors:

Kurysheva N.I., Lepeshkina L.V.

More about the authors

Journal: Russian Annals of Ophthalmology. 2020;136(1): 17‑24

Read: 2014 times


To cite this article:

Kurysheva NI, Lepeshkina LV. Biomechanical properties of the cornea as predictors of the effectiveness of selective laser trabeculoplasty. Russian Annals of Ophthalmology. 2020;136(1):17‑24. (In Russ.)
https://doi.org/10.17116/oftalma202013601117

Recommended articles:
Inve­stigation of iridotrabecular contact in primary angle closure. Russian Annals of Ophthalmology. 2024;(6):24-31
Neuroprotective therapy of glaucoma. Russian Annals of Ophthalmology. 2025;(1):83-90

References:

  1. Waisbourd M, Katz L.J. Selective laser trabeculoplasty as a first-line therapy: a review. Canadian Journal of Ophthalmology. 2014;49(6):519–522. https://doi.org/10.1016/j.jcjo.2014.10.003
  2. Ho CL, Lai JS, Aquino MV, Rojanapongpun P, Wong HT, Aquino MC, Gerber Y, Belkin M, Barkana Y. Selective laser trabeculoplasty for primary angle closure with persistently elevated intraocular pressure after iridotomy. Journal of Glaucoma. 2009;18(7):563–566. https://doi.org/10.1097/ijg.0b013e318193c2d1
  3. Ali Aljasim L, Owaidhah O, Edward DP. Selective Laser Trabeculoplasty in Primary Angle-closure Glaucoma After Laser Peripheral Iridotomy: A Case-Control Study. Journal of Glaucoma. 2016; (3):253–258. https://doi.org/10.1097/ijg.0000000000000282
  4. Radhakrishnan S, Chen PP, Junk AK, Nouri-Mahdavi K, Chen TC. Laser peripheral iridotomy in primary angle closure: a report by the American Academy of Ophthalmology. Ophthalmology. 2018; 125:1110–1120. https://doi.org/10.1016/j.ophtha.2018.01.015
  5. Raj S, Tigari B, Faisal TT, Gautam N, Kaushik S, Ichhpujani P, Pandav SS, Ram J. Efficacy of selective laser trabeculoplasty in primary angle closure disease. Eye (Lond). 2018; 32(11):1710–1716. https://doi.org/10.1038/s41433-018-0165-5
  6. Lee JW, Liu CC, Chan JC, Wong R, Wong Y, Lai JS. Predictors of success in selective laser trabeculoplasty for primary open angle glaucoma in Chinese. Clinical Ophthalmology. 2014; 8:1787–1791. https://doi.org/10.2147/opth.s69166
  7. Barretto GC, Biteli LG, Moreno PA, Prata TS. Selective Laser Trabeculoplasty: Predictors of Short-Term Surgical Outcomes in Open-Angle Glaucoma Patients. Investigative Ophthalmology and Visual Science. 2011; 52: 2624.
  8. Miki A, Kawashima R, Usui S, Matsushita K, Nishida K. Treatment Outcomes and Prognostic Factors of Selective Laser Trabeculoplasty for Open-angle Glaucoma Receiving Maximal-tolerable Medical Therapy. Journal of Glaucoma. 2016; 25(10):785–789. https://doi.org/10.1097/ijg.0000000000000411
  9. Shah M, Eliassi-Rad B. Predictive Factors of Selective Laser Trabeculoplasty (SLT) Outcome in Open-Angle Glaucoma Patients. Investigative Ophthalmology and Visual Science. 2012; 53:5964. https://doi.org/10.4016/41168.01
  10. Ayala M, Chen E. Predictive factors of success in selective laser trabeculoplasty (SLT) treatment. Clinical Ophthalmology. 2011;5:573–576. https://doi.org/10.2147/opth.s19873
  11. Lee JW, Chan JC, Chang RT, Singh K, Liu CC, Gangwani R, Wong MO, Lai JS. Corneal changes after a single session of selective laser trabeculoplasty for open-angle glaucoma. Eye. 2013;28(1):47–52. https://doi.org/10.1038/eye.2013.231
  12. Yilmaz SG, Palamar M, Yusifov E, Ates H, Egrilmez S, Yagci A. Effects of primary selective laser trabeculoplasty on anterior segment parameters. International Journal of Ophthalmology. 2015;8(5):954–959. https://doi.org/10.3980/j.issn.2222-3959.2015.05.18
  13. Avetisov SE, Bubnova IA, Antonov AA. Issledovanie biomehanicheskih svoystv rogovitsyi u patsientov s normotenzivnoy i pervichnoy otkryitougolnoy glaukomoy. Vestnik oftal’mologii. 2008; 124(5):14–16. (In Russ.).
  14. Hirneiss C., Sekura K., Brandlhuber U., Kampik A., Kernt M. Corneal biomechanics predict the outcome of selective laser trabeculoplasty in medically uncontrolled glaucoma. Graefe’s Arch for Clinical and Experimental Ophthalmology. 2013; 251(10):2383–2388. https://doi.org/10.1007/s00417-013-2416-2
  15. Schweitzer J. A., Ervin M., Berdahl J. P. Assessment of corneal hysteresis measured by the ocular response analyzer as a screening tool in patients with glaucoma. Clin Ophthalmol. 2018; 12:1809–1813. https://doi.org/10.2147/OPTH.S168032
  16. Liang L., Zhang R., He L.Y. Corneal hysteresis and glaucoma. Int Ophthalmol. 2018 Sep 5. https://doi.org/10.1007/s10792-018-1011-2
  17. Spaeth G. L. The normal development of the human anterior chamber angle: a new system of descriptive grading. Transactions of the ophthalmological societies of the United Kingdom. 1971;91:709–739.
  18. Macdonald J. M., Geroski D. H., Edelhauser H. F. Effect of inflammation on the cornealendothelial pump and barrier. Current Eye Research. 1987;6(9):1125–1132. https://doi.org/10.3109/02713688709034885
  19. Leahy KE, Madigan MC, Sarris M, Watson SL, McCluskey P, White AJ. Investigation of corneal endothelial changes post selective laser trabeculoplasty. Clinical and Experimental Ophthalmology. 2018. https://doi.org/10.1111/ceo.13172
  20. Kurysheva N, Shatalova E. Polymegathism, Pleomorphism, and Endothelial Cell Count after Selective Laser Trabeculoplasty. Biology and Medicine. 2016;8:7. https://doi.org/10.4172/0974-8369.1000343
  21. Minkowski JS, Bartels SP, Delori FC, Lee SR, Kenyon KR, Neufeld AH. Corneal Endofhelial Function and Structure Following Cryo-lnjury in the Rabbit. Investigative Ophthalmology and Visual Science. 1984;25(12):1416– 1425.
  22. Sharifipour F, Panahi-bazaz M, Bidar R, Idani A, and Cheraghian B. Age-related variations in corneal biomechanical properties. Journal of Current Ophthalmology. 2016; 28(3): 117–122. https://doi.org/10.1016/j.joco.2016.05.004
  23. Johnson CS, Mian SI, Moroi S, Epstein D, Izatt J, Afshari NA. Role of corneal elasticity in damping of intraocular pressure. Investigative Opthalmology and Visual Science. 2007;48(6):2540–2544. https://doi.org/10.1167/iovs.06-0719
  24. Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA. Central corneal thickness and corneal 1 hysteresis associated with glaucoma damage. Am J Ophthalmol. 2006;141(5):868–875. https://doi.org/10.1016/j.ajo.2005.12.007
  25. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response 28 analyzer. J Cataract Refract Surg. 2005;31(1):156–162. https://doi.org/10.1016/j.jcrs.2004.10.04
  26. Wells AP, Garway-Heath DF, Poostchi A, Wong T, Chan KC, Sachdev N. Corneal hysteresis but not corneal thickness 20 correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci. 21 2008; 49(8):3262–3268. https://doi.org/10.1167/iovs.07-1556
  27. Khawaja AP, Chan MP, Broadway DC, Garway-Heath DF, Luben R, Yip J L, Hayat S, Khaw KT, Foster PJ. Corneal biomechanical properties and glaucoma-33 related quantitative traits in the EPIC-Norfolk Eye Study. Invest Ophthalmol Vis Sci. 2014; 55(1):117–124. https://doi.org/10.1167/iovs.13-13290
  28. Kurysheva NI, Parshunina OA, Shatalova EO, Kiseleva TN, Lagutin MB, Fomin AV. Value of Structural and Hemodynamic Parameters for the Early Detection of Primary Open-Angle Glaucoma. Current Eye Research. 2017; 42(3):411–417. https://doi.org/10.1080/02713683.2016.1184281
  29. Medeiros FA, Meira-Freitas D, Lisboa R, Kuang TM, Zangwill LM, Weinreb RN. Corneal hysteresis as a risk factor for glaucoma progression: a prospective longitudinal study. Ophthalmology. 2013; 120:1533–1540. https://doi.org/10.1016/j.ophtha.2013.01.032
  30. Narayanaswamy A, Su DH, Baskaran M, Tan AC, Nongpiur ME, Htoon H M, Wong TY, Aung T. Comparison of ocular response analyzer parameters in chinese subjects with primary angle-closure and primary open-angle glaucoma. Archives of Ophthalmology. 2011; 129(4):429–434. https://doi.org/10.1001/archophthalmol.2011.60
  31. Klingenstein A, Kernt M, Seidensticker F, Kampik A, Hirneiss C. Anterior-segment morphology and corneal biomechanical characteristics in pigmentary glaucoma. Clinical Ophthalmology. 2014; 8: 119–126. https://doi.org/10.2147/opth.s53088
  32. Yamamoto Y, Uno T, Joko T, Shiraishi A, Ohashi Y. Effect of Anterior Chamber Depth on Shear Stress Exerted on Corneal Endothelial Cells by Altered Aqueous Flow after Laser Iridotomy. Investigative Ophthalmology and Visual Science. 2010; 51:1956–1964. https://doi.org/10.1167/iovs.09-4280
  33. Ong K, Ong L, Ong L. Corneal endothelial changes after selective laser trabeculoplasty. Clinical and Experimental Ophthalmology. 2013;41(6):537– 540. https://doi.org/10.1111/ceo.12068
  34. Hurmeric V, Sahin A, Ozge G, Bayer A. The relationship between corneal biomechanical properties and confocal microscopy findings in normal and keratoconic eyes. Cornea. 2010;29(6):641–649. https://doi.org/10.1097/ico.0b013e3181c11dc6

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.