The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Erichev V.P.

FGBU "Nauchno-issledovatel'skiĭ institut glaznykh bolezneĭ" RAMN, Moskva

Panyushkina L.A.

Research Institute of Eye Diseases, 11 A, B Rossolimo St., Moscow, Russian Federation, 119021

Modern view on ocular hypertension

Authors:

Erichev V.P., Panyushkina L.A.

More about the authors

Journal: Russian Annals of Ophthalmology. 2019;135(5‑2): 305‑311

Read: 288 times


To cite this article:

Erichev VP, Panyushkina LA. Modern view on ocular hypertension. Russian Annals of Ophthalmology. 2019;135(5‑2):305‑311. (In Russ.)
https://doi.org/10.17116/oftalma2019135052305

Recommended articles:
Perioperative prevention of bleeding in glaucoma surgery. Russian Annals of Ophthalmology. 2024;(5):118-124
Non-invasive auto­mated methods for the diagnosis of periorbital skin tumors. Russian Annals of Ophthalmology. 2024;(5):137-145
The resu­lts of fistulizing glaucoma surgeries in pseudophackic patients. Russian Annals of Ophthalmology. 2025;(1):45-52
Neuroprotective therapy of glaucoma. Russian Annals of Ophthalmology. 2025;(1):83-90

References:

  1. Le A, Mukesh BN, McCarty CA, Taylor HR. Risk factors associated with the incidence of open-angle glaucoma: the visual impairment project. Investigative Opthalmology & Visual Science. 2003;44(9):3783-3789. https://doi.org/10.1167/iovs.03-0077
  2. Czudowska MA, Ramdas WD, Wolfs RC, Hofman A, De Jong PT, Vingerling JR, Jansonius NM. Incidence of glaucomatous visual field loss: a ten-year follow-up from the Rotterdam Study. Ophthalmology. 2010;117(9):1705-1712. https://doi.org/10.1016/j.ophtha.2010.01.034
  3. Tielsch JM, Katz J, Singh K, Quigley HA, Gottsch JD, Javitt J, Sommer A. A population-based evaluation of glaucoma screening: the Baltimore Eye Survey. American Journal of Epidemiology. 1991;134:1102-1110. https://doi.org/10.1093/oxfordjournals.aje.a116013
  4. Leske MC, Connell AM, Wu SY, Hyman LG, Schachat AP. Risk factors for open-angle glaucoma: The Barbados eye Study. Archives of Ophthalmology. 1995;113:918-924. https://doi.org/10.1001/archopht.1995.01100070092031
  5. Kini MM, Leibowitz HM, Colton T, Nickerson RG, Ganley J, Dawber TR. Prevalence of Senile Cataract, Diabetic Retinopathy, Senile Macular Degeneration, and Open-Angle Glaucoma In The Framingham Eye Study. American Journal of Ophthalmology. 1978;85(1):28-34. https://doi.org/10.1016/s0002-9394(14)76661-9
  6. Gordon MO, Beiser JA, Brandt JD, Heuer DK, Higginbotham EJ, Johnson CA, et al. The Ocular Hypertension Treatment Study. Baseline factors that predict the onset of primary open-angle glaucoma. Archives of Ophthalmology. 2002;120:714-720. https://doi.org/10.1001/archopht.120.6.714
  7. Sommer A, Tielsch JM, Katz J, et al. Relationship between intraocular pressure and primary open angle glaucoma among white and black Americans. The Baltimore Eye Survey. 1991;109(8):1090-1095. https://doi.org/10.1001/archopht.1991.01080080050026
  8. Colton T, Ederer F. The distribution of intraocular pressures in the general population. Survey of Ophthalmology. 1980;25(3):123-129. https://doi.org/10.1016/0039-6257(80)90086-7
  9. Bengtsson B, Heijl A. A long-term prospective study of risk factors for glaucomatous visual field loss in patients with ocular hypertension. Journal of Glaucoma. 2005;14(2):135-138. https://doi.org/10.1097/01.ijg.0000151683.04410.f3
  10. Chihara E. Assessment of true intraocular pressure: the gap between theory and practical data. Survey of Ophthalmology. 2008;53(3):203-218. https://doi.org/10.1016/j.survophthal.2008.02.005
  11. Avetisov SE, Bubnova IA, Antonov AA. Variability in biomechanical properties of the fibrous tunic of the eye in a healthy population. Vestnik oftal’mologii. 2015;131(5):20-25. (In Russ.).] https://doi.org/10.17116/oftalma2015131520-24
  12. Ko Y-C, Liu CJ-l, Hsu W-M. Varying effects of corneal thickness on intraocular pressure measurements with different tonometers. Eye. 2005;19(3):327-332. https://doi.org/10.1038/sj.eye.6701458
  13. Bueno-Gimeno I, Espa a-Gregori E, Gene-Sampedro A, Lanzagorta-Aresti A, Piero-Llorens DP. Relationship among corneal biomechanics, refractive error, and axial length. Optometry and Vision Science. 2014;91(5):507-513. https://doi.org/10.1097/opx.0000000000000231
  14. Kohlhaas M, Boehm AG, Spoerl E, Pürsten A, Dipl-Ing, Grein AH, Pillunat LE. Effect of central corneal thickness, corneal curvature, and axial length on applanation tonometry. Archives of Ophthalmology. 2006;124(4):471-476. https://doi.org/10.1001/archopht.124.4.471
  15. Kouchakia B, Hashemiba H, Yekta A, Habazkhoobda M. Comparison of current tonometry techniques in measurement of intraocular pressure. Journal of Current Ophthalmology. 2017;29(2):92-97. https://doi.org/10.1016/j.joco.2016.08.010
  16. Ping-Bo Ouyang, Cong-Yi Li, Xiao-Hua Zhu, and Xuan-Chu Duan. Assessment of intraocular pressure measured by Reichert Ocular Response Analyzer, Goldmann Applanation Tonometry, and Dynamic Contour Tonometry in healthy individuals. International Journal of Ophthalmology. 2012;5(1):102-107. https://doi.org/10.3980/j.issn.2222-3959.2012.01.21
  17. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. Journal of Cataract & Refractive Surgery. 2005;31(1):156-162. https://doi.org/10.1016/j.jcrs.2004.10.044
  18. Kaufmann C, Bachmann LM, Thiel MA. Comparison of dynamic contour tonometry with Goldmann applanation tonometry. Investigative Opthalmology & Visual Science. 2004;45(9):3118-3121. https://doi.org/10.1167/iovs.04-0018
  19. Pepose JS, Feigenbaum SK, Qazi MA, Sanderson JP, Roberts CJ. Changes in corneal biomechanics and intraocular pressure following LASIK using static, dynamic, and noncontact tonometry. American Journal of Ophthalmology. 2007;143(1):39-47. https://doi.org/10.1016/j.ajo.2006.09.036
  20. Marini M, Da Pozzo S, Accardo A, Canziani T. Comparing applanation tonometry and rebound tonometry in glaucomatous and ocular hypertensive eyes. European Journal of Ophthalmology. 2010;21(3):258-263. https://doi.org/10.5301/ejo.2010.5767
  21. Konstas AG, Mantziris DA, Stewart WC. Diurnal intraocular pressure in untreated exfoliation and primary open-angle glaucoma. Archives of Ophthalmology. 1997;115(2):182-185. https://doi.org/10.1001/archopht.1997.01100150184006
  22. Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Archives of Ophthalmology. 2002;120(6):701-713. https://doi.org/10.1001/archopht.120.6.701
  23. Miglior S, Zeyen T, Pfeiffer N, Cunha-Vaz J, Torri V, Adamsons I. Results of the European Glaucoma Prevention Study. Ophthalmology. 2005;112(9):366-375. https://doi.org/10.1016/j.ophtha.2005.06.020
  24. Medeiros FA, Alencar LM, Zangwill LM, Bowd C, Sample PA, Weinreb RN. Prediction of functional loss in glaucoma from progressive optic disc damage. Archives of Ophthalmology. 2009;127(10):1250-1256. https://doi.org/10.1001/archophthalmol.2009.276
  25. Artes PH, Chauhan BC. Longitudinal changes in the visual field and optic disc in glaucoma. Progress in Retinal and Eye Research. 2005;24(3):333-354. https://doi.org/10.1016/j.preteyeres.2004.10.002
  26. Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. Investigative Ophthalmology & Visual Science. 2000;41(3):741-748.
  27. Leung CK, Cheung CY, Weinreb RN et al. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: a variability and diagnostic performance study. Ophthalmology. 2009;116(7):1257-1263. https://doi.org/10.1016/j.ophtha.2009.04.013
  28. Deleón-Ortega JE, Arthur SN, McGwin G, Jr, Xie A, Monheit BE, Girkin CA. Discrimination between glaucomatous and nonglaucomatous eyes using quantitative imaging devices and subjective optic nerve head assessment. Investigative Opthalmology & Visual Science. 2006;47(8):3374-3380. https://doi.org/10.1167/iovs.05-1239
  29. Lisboa R, Paranhos A Jr, Weinreb RN, et al. Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. Investigative Opthalmology & Visual Science. 2013;13:54(5):5:3417-3425. https://doi.org/10.1167/iovs.13-11676
  30. Oddone F, Lucenteforte E, Michelessi M, et al. Macular versus retinal nerve fiber layer parameters for diagnosing manifest glaucoma: a systematic review of diagnostic accuracy studies. Ophthalmology. 2016;123(5):939-949. https://doi.org/10.1016/j.ophtha.2015.12.041
  31. Kim MJ, Jeoung JW, Park KH, et al. Topographic profiles of retinal nerve fiber layer defects affect the diagnostic performance of macular scans in preperimetric glaucoma. Investigative Opthalmology & Visual Science. 2014;55:2079-2087.
  32. Kim MJ, Park KH, Yoo BW, et al. Comparison of macular GCIPL and peripapillary RNFL deviation maps for detection of glaucomatous eye with localized RNFL defect. Acta Ophthalmologica. 2015;93(1):22-28. https://doi.org/10.1111/aos.12485
  33. Wilsey LJ, Fortune B. Electroretinography in glaucoma diagnosis. Current Opinion in Ophthalmology. 2016;27(2):118-124. https://doi.org/10.1097/ICU.0000000000000241
  34. Kurysheva NI, Maslova EV, Zolnikova IV, Fomin AV, Lagutin MB. A comparative study of structural, functional and circulatory parameters in glaucoma diagnostics. PLoS One. 2018;23:13(8):0201599. https://doi.org/10.1371/journal.pone.0201599
  35. Yu M, Lin C, Weinreb RN, et al. Risk of visual field progression in glaucoma patients with progressive retinal nerve fiber layer thinning: a 5-year prospective study. Ophthalmology. 2016;123(6):1201-1210. https://doi.org/10.1016/j.ophtha.2016.02.017
  36. Tatham AJ, Weinreb RN, Medeiros FA. Strategies for improving early detection of glaucoma: the combined structure — function index. Clinical Ophthalmology. 2014;8:611-621. https://doi.org/10.2147/opth.s44586
  37. Kass MA, Gordon MO, Hoff MR, et al. Topical timolol administration reduces the incidence of glaucomatous damage in ocular hypertensive individuals. A Randomized, Double-Masked, Long-Term Clinical Trial. 1989;107(11):1590-1598. https://doi.org/10.1001/archopht.1989.01070020668025
  38. Quigley HA, Enger C, Katz J, Sommer A, Scott R, Gilbert D. Risk factors for the development of glaucomatous visual field loss in ocular hypertension. Archives of Ophthalmology. 1994;112(5):644-649. https://doi.org/10.1001/archopht.1994.01090170088028
  39. Georgopoulos G, Andreanos D, Liokis N, Papakonstantinou D, Vergados J, Theodossiadis G. Risk factors in ocular hypertension. European Journal of Ophthalmology. 1997;7(4):357-363. https://doi.org/10.1177/112067219700700409
  40. Brandt JD, Beiser JA, Kass MA, Gordon MO. Central corneal thickness in the Ocular Hypertension Treatment Study (OHTS). Ophthalmology. 2001;108(10):1779-1788. https://doi.org/10.1016/s0161-6420(01)00760-6
  41. Results of the European Glaucoma Prevention Study. Ophthalmology. 2005;112(3):366-375. https://doi.org/10.1016/j.ophtha.2004.11.030
  42. Asrani S, Zeimer R, Wilensky J, Gieser D, Vitale S, Lindenmuth K. Large diurnal fluctuations in intraocular pressure are an independent risk factor in patients with glaucoma. Journal of Glaucoma. 2000;9(2):134-142. https://doi.org/10.1097/00061198-200004000-00002
  43. Epstein DL, Krug JH Jr, Hertzmark E, Remis LL, Edelstein DJ. A long-term clinical trial of timolol therapy versus no treatment in the management of glaucoma suspects. Ophthalmology. 1989;96(10):1460-1467. https://doi.org/10.1016/s0161-6420(89)32688-1
  44. Tielsch JM, Sommer A, Katz J, Royall RM, Quigley HA, Javitt J. Racial variations in the prevalence of primary open-angle glaucoma. The Baltimore Eye Survey. JAMA. 1991;266(3):369-374. https://doi.org/10.1001/jama.1991.03470030069026
  45. La Rosa FA, Gross RL, Orengo-Nania S. Central corneal thickness of Caucasians and African Americans in glaucomatous and nonglaucomatous populations. Archives of Ophthalmology. 2001;119(1):23-27. https://doi.org/10-1001/pubs.Ophthalmol.-ISSN-0003-9950-119-1-ecs90288
  46. Wolfs RCW, Klaver CCW, Ramrattan RS, van Duijn CM, Hofman A, de Jong PTVM. Genetic risk of primary openangle glaucoma. Population-based familial aggregation study. Archives of Ophthalmology. 1998;116(12):1640-1645. https://doi.org/10.1001/archopht.116.12.1640
  47. AGIS Investigators. The Advanced Glaucoma Intervention Study (AGIS): 12. Baseline risk factors for sustained loss of visual field and visual acuity in patients with advanced glaucoma. American Journal of Ophthalmology. 2002;134(4):499-512. https://doi.org/10.1016/s0002-9394(02)01659-8
  48. Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E, for the Early Manifest Glaucoma Trial Group. Factors for glaucoma progression and the effect of treatment. The Early Manifest Glaucoma Trial. Archives of Ophthalmology. 2003;121(1):48-56. https://doi.org/10.1001/archopht.121.1.48
  49. Friedman DS, Wilson MR, Liebmann JM, Fechtner RD, Weinreb RN. An evidence-based assessment of risk factors for the progression of ocular hypertension and glaucoma. American Journal of Ophthalmology. 2004;138(3):19-31. https://doi.org/10.1016/j.ajo.2004.04.058
  50. Van Gestel A, Webers CA, Beckers HJ, Peeters A, Severens JL. Ocular hypertension and risk of blindness. Journal of Glaucoma. 2015;24(1):9-11. https://doi.org/10.1097/IJG.0b013e318287ac75
  51. Salvetat ML, Zeppieri M, Tosoni C, Brusini P. Baseline factors predicting the risk of conversion from ocular hypertension to primary open-angle glaucoma during a 10-year follow-up. Eye. 2016;30(6):784-795. https://doi.org/10.1038/eye.2016.86

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.