Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Клюшников И.Д.

ГБУЗ МО «Московский областной научно-исследовательский институт акушерства и гинекологии им. акад. В.И. Краснопольского» Минздрава Московской области

Попов А.А.

ГБУЗ Московской области «Московский областной научно-исследовательский институт акушерства и гинекологии им. акад. В.И. Краснопольского» Минздрава Московской области

Щукина А.С.

ГБУЗ МО «Московский областной научно-исследовательский институт акушерства и гинекологии им. акад. В.И. Краснопольского» Минздрава Московской области

Федорина С.И.

ГБУЗ МО «Московский областной научно-исследовательский институт акушерства и гинекологии им. акад. В.И. Краснопольского» Минздрава Московской области

Несен Г.В.

ГБУЗ МО «Московский областной научно-исследовательский институт акушерства и гинекологии им. акад. В.И. Краснопольского» Минздрава Московской области

Трехмерное моделирование тазового дна методом конечных элементов: текущий статус и перспективы

Авторы:

Клюшников И.Д., Попов А.А., Щукина А.С., Федорина С.И., Несен Г.В.

Подробнее об авторах

Прочитано: 447 раз


Как цитировать:

Клюшников И.Д., Попов А.А., Щукина А.С., Федорина С.И., Несен Г.В. Трехмерное моделирование тазового дна методом конечных элементов: текущий статус и перспективы. Российский вестник акушера-гинеколога. 2025;25(4):29‑36.
Klyushnikov ID, Popov AA, Shchukina AS, Fedorina SI, Nesen GV. Three-dimensional modeling of the pelvic floor by the finite element method: current status and prospects. Russian Bulletin of Obstetrician-Gynecologist. 2025;25(4):29‑36. (In Russ.)
https://doi.org/10.17116/rosakush20252504129

Литература / References:

  1. Peinado-Molina RA, Hernández-Martínez A, Martínez-Vázquez S, Rodríguez-Almagro J, Martínez-Galiano JM. Pelvic floor dysfunction: prevalence and associated factors. BMC Public Health. 2023;23:1:2005. https://doi.org/10.1186/s12889-023-16901-3
  2. Lamblin G, Mayeur O, Giraudet G, Jean Dit Gautier E, Chene G, Brieu M, Rubod C, Cosson M. Pathophysiological aspects of cystocele with a 3D finite elements model. Arch Gynecol Obstet. 2016;294:5:983-989.  https://doi.org/10.1007/s00404-016-4150-6
  3. Wilkins MF, Wu JM. Lifetime risk of surgery for stress urinary incontinence or pelvic organ prolapse. Minerva Ginecol. 2017; 69:2:171-177.  https://doi.org/10.23736/S0026-4784.16.04011-9
  4. Буянова С.Н., Федорина С.И., Петракова С.А., Глебов Т.А., Клюшников И.Д., Брыляева А.Е. Пролапс тазовых органов у женщин молодого возраста. Российский вестник акушера-гинеколога. 2023;23:6-2:142-148.  https://doi.org/10.17116/rosakush202323062142
  5. DeLancey JO. Anatomic aspects of vaginal eversion after hysterectomy. Am J Obstet Gynecol. 1992;166:6 Pt 1:1717-1724; discussion 1724-1728. https://doi.org/10.1016/0002-9378(92)91562-o
  6. Petros PE, Woodman PJ. The Integral theory of continence. Int Urogynecol J Pelvic Floor Dysfunct. 2008;19:1:35-40.  https://doi.org/10.1007/s00192-007-0475-9
  7. Segev Y, Auslender R, Feiner B, Lissak A, Lavie O, Abramov Y. Are women with pelvic organ prolapse at a higher risk of developing hernias? Int Urogynecol J Pelvic Floor Dysfunct. 2009; 20:12:1451-1453. https://doi.org/10.1007/s00192-009-0968-9
  8. Lince SL, van Kempen LC, Vierhout ME, Kluivers KB. A systematic review of clinical studies on hereditary factors in pelvic organ prolapse. Int Urogynecol J. 2012;23:10:1327-1336. https://doi.org/10.1007/s00192-012-1704-4
  9. Albertazzi P, Sharma S. Urogenital effects of selective estrogen receptor modulators: a systematic review. Climacteric. 2005; 8:3:214-220.  https://doi.org/10.1080/13697130500117946
  10. Vermeulen CKM, Veen J, Adang C, van Leijsen SAL, Coolen AWM, Bongers MY. Pelvic organ prolapse after laparoscopic hysterectomy compared with vaginal hysterectomy: the POP-UP study. Int Urogynecol J. 2021;32:4:841-850.  https://doi.org/10.1007/s00192-020-04591-z
  11. Martins P, Lopes Silva-Filho A, Rodrigues Maciel da Fonseca AM, Santos A, Santos L, Mascarenhas T, Natal Jorge RM, Ferreira AJ. Biomechanical properties of vaginal tissue in women with pelvic organ prolapse. Gynecol Obstet Invest. 2013;75:2:85-92.  https://doi.org/10.1159/000343230
  12. Chen J, Zhang J, Yu C. A 3D finite element model of uterus support to evaluate mechanisms underlying uterine prolapse formation. Comput Methods Biomech Biomed Engin. 2023;26:15:1930-1939. https://doi.org/10.1080/10255842.2022.2159759
  13. Noakes KF, Pullan AJ, Bissett IP, Cheng LK. Subject specific finite elasticity simulations of the pelvic floor. J Biomech. 2008; 41:14:3060-3065. https://doi.org/10.1016/j.jbiomech.2008.06.037
  14. Tarala M, Janssen D, Telka A, Waanders D, Verdonschot N. Experimental versus computational analysis of micromotions at the implant-bone interface. Proc Inst Mech Eng H. 2011;225:1:8-15.  https://doi.org/10.1243/09544119JEIM825
  15. Welch-Phillips A, Gibbons D, Ahern DP, Butler JS. What is finite element analysis? Clin Spine Surg. 2020;33:8:323-324.  https://doi.org/10.1097/BSD.0000000000001050
  16. Top A, Hamarneh G, Abugharbieh R. Active learning for interactive 3D image segmentation. Med Image Comput Comput Assist Interv. 2011;14:Pt 3:603-610.  https://doi.org/10.1007/978-3-642-23626-6_74
  17. Шмурак М.И., Кучумов А.Г., Воронова Н.О. Анализ гиперупругих моделей для описания поведения мягких тканей организма человека. Master’s Journal. 2017;1:230-243. 
  18. Donaldson K, Huntington A, De Vita R. Mechanics of Uterosacral Ligaments: Current Knowledge, Existing Gaps, and Future Directions. Ann Biomed Eng. 2021;49:8:1788-1804. https://doi.org/10.1007/s10439-021-02755-6
  19. Ulrich D, Edwards SL, Su K, White JF, Ramshaw JA, Jenkin G, Deprest J, Rosamilia A, Werkmeister JA, Gargett CE. Influence of reproductive status on tissue composition and biomechanical properties of ovine vagina. PLoS One. 2014;9:4:e93172. https://doi.org/10.1371/journal.pone.0093172
  20. Orbach DN, Rattan S, Hogan M, Crosby AJ, Brennan PLR. Biomechanical properties of female dolphin reproductive tissue. Acta Biomater. 2019;86:117-124.  https://doi.org/10.1016/j.actbio.2019.01.012
  21. Egorov V, van Raalte H, Lucente V. Quantifying vaginal tissue elasticity under normal and prolapse conditions by tactile imaging. Int Urogynecol J. 2012;23:4:459-466.  https://doi.org/10.1007/s00192-011-1592-z
  22. Lallemant M, Vega A, Chambert J, Jacquet E, Ramanah R. Biomechanical interests of supra-cervical hysterectomy with sacrocolpopexy: first study using finite element modeling. Int Urogynecol J. 2021;32:6:1599-1602. https://doi.org/10.1007/s00192-020-04664-z
  23. Li D, Guo M. Morphology of the levator ani muscle. Dis Colon Rectum. 2007;50:1831-1839. https://doi.org/10.1007/s10350-007-0265-y
  24. Krofta L, Havelková L, Urbánková I, Krčmář M, Hynčík L, Feyereisl J. Finite element model focused on stress distribution in the levator ani muscle during vaginal delivery. Int Urogynecol J. 2017;28:2:275-284.  https://doi.org/10.1007/s00192-016-3126-1
  25. Martins JA, Pato MP, Pires EB, Jorge RM, Parente M, Mascarenhas T. Finite element studies of the deformation of the pelvic floor. Ann N Y Acad Sci. 2007;1101:316-334.  https://doi.org/10.1196/annals.1389.019
  26. Janda S, van der Helm FC, de Blok SB. Measuring morphological parameters of the pelvic floor for finite element modelling purposes. J Biomech. 2003;36:6:749-757.  https://doi.org/10.1016/s0021-9290(03)00008-3
  27. Lee SL, Tan E, Khullar V, Gedroyc W, Darzi A, Yang GZ. Physical-based statistical shape modeling of the levator ani. IEEE Trans Med Imaging. 2009;28:6:926-936.  https://doi.org/10.1109/TMI.2009.2012894
  28. Hoyte L, Schierlitz L, Zou K, Flesh G, Fielding JR. Two- and 3-dimensional MRI comparison of levator ani structure, volume, and integrity in women with stress incontinence and prolapse. Am J Obstet Gynecol. 2001;185:1:11-19.  https://doi.org/10.1067/mob.2001.116365
  29. Giraudet G, Patrouix L, Fontaine C, Demondion X, Cosson M, Rubod C. Three dimensional model of the female perineum and pelvic floor muscles. Eur J Obstet Gynecol Reprod Biol. 2018; 226:1-6.  https://doi.org/10.1016/j.ejogrb.2018.05.011
  30. Cechova H, Kalis V, Havelkova L, Rusavy Z, Fiala P, Rybarova M, Hyncik L, Krofta L, Ismail KM. Finite element modeling of maximum stress in pelvic floor structures during the head expulsion (FINESSE) study. Int Urogynecol J. 2021;32:7:1997-2003. https://doi.org/10.1007/s00192-021-04769-z
  31. Xuan R, Yang M, Gao Y, Ren S, Li J, Yang Z, Song Y, Huang XH, Teo EC, Zhu J, Gu Y. A Simulation analysis of maternal pelvic floor muscle. Int J Environ Res Public Health. 2021;18:20:10821. https://doi.org/10.3390/ijerph182010821
  32. Moura R, Oliveira DA, Parente MPL, Kimmich N, Natal Jorge RM. A biomechanical perspective on perineal injuries during childbirth. Comput Methods Programs Biomed. 2024;243:107874. https://doi.org/10.1016/j.cmpb.2023.107874
  33. Luo J, Smith TM, Ashton-Miller JA, DeLancey JO. In vivo properties of uterine suspensory tissue in pelvic organ prolapse. J Biomech Eng. 2014;136:2:021016. https://doi.org/10.1115/1.4026159
  34. Lewicky-Gaupp C, Yousuf A, Larson KA, Fenner DE, Delancey JO. Structural position of the posterior vagina and pelvic floor in women with and without posterior vaginal prolapse. Am J Obstet Gynecol. 2010;202:5:497.e1-6.  https://doi.org/10.1016/j.ajog.2010.01.001
  35. Milani R, Salvatore S, Soligo M, Pifarotti P, Meschia M, Cortese M. Functional and anatomical outcome of anterior and posterior vaginal prolapse repair with prolene mesh. BJOG. 2005; 112:1:107-111.  https://doi.org/10.1111/j.1471-0528.2004.00332.x
  36. Клюшников И.Д., Попов А.А., Еникеев М.Э., Снурницына О.В., Федоров А.А., Коваль А.А., Тюрина С.С., Бабаева С.А. Хирургическая коррекция переднеапикального пролапса гениталий с позиции оперативного доступа. Российский вестник акушера-гинеколога. 2023;23:3:85-91.  https://doi.org/10.17116/rosakush20232303185
  37. Lecomte-Grosbras P, Diallo MN, Witz JF, Marchal D, Dequidt J, Cotin S, Cosson M, Duriez C, Brieu M. Towards a better understanding of pelvic system disorders using numerical simulation. Med Image Comput Assist Interv. 2013;16:Pt 3:307-314.  https://doi.org/10.1007/978-3-642-40760-4_39
  38. Mayeur O, Lamblin G, Lecomte-Grosbras P, Brieu M, Rubod C, & Cosson M. FE Simulation for the understanding of the median cystocele prolapse occurrence. Lecture Notes in Computer Science. 2014;220-227.  https://doi.org/10.1007/978-3-319-12057-7_25
  39. Liu X, Rong Q, Liu Y, Wang J, Xie B, Ren S. Relationship between high intra-abdominal pressure and compliance of the pelvic floor support system in women without pelvic organ prolapse: a finite element analysis. Front Med. 2022;9:820016. https://doi.org/10.3389/fmed.2022.820016
  40. Chen J, Zhang J, Wang F. A finite element analysis of different postures and intra-abdominal pressures for the uterine ligaments in maintaining the normal position of uterus. Sci Rep. 2023;13:1:5082. https://doi.org/10.1038/s41598-023-32368-z
  41. Xu Z, Chen N, Wang B, Yang J, Liu H, Zhang X, Li Y, Liu L, Wu Y. Creation of the biomechanical finite element model of female pelvic floor supporting structure based on thin-sectional high-resolution anatomical images. J Biomech. 2023;146:111399. https://doi.org/10.1016/j.jbiomech.2022.111399
  42. Ashton-Miller JA, DeLancey JO. Functional anatomy of the female pelvic floor. Ann N Y Acad Sci. 2007;1101:266-296. https://doi.org/10.1196/annals.1389.034
  43. Del Vescovo R, Piccolo CL, Della Vecchia N, Giurazza F, Cazzato RL, Grasso RF, Zobel BB. MRI role in morphological and functional assessment of the levator ani muscle: use in patients affected by stress urinary incontinence (SUI) before and after pelvic floor rehabilitation. Eur J Radiol. 2014;83:3:479-486.  https://doi.org/10.1016/j.ejrad.2013.11.021
  44. Sendag F, Vidinli H, Kazandi M, Itil IM, Askar N, Vidinli B, Pourbagher A. Role of perineal sonography in the evaluation of patients with stress urinary incontinence. Aust N Z J Obstet Gynaecol. 2003;43:1:54-57.  https://doi.org/10.1046/j.0004-8666.2003.00012.x
  45. Zhang Y, Kim S, Erdman AG, Roberts KP, Timm GW. Feasibility of using a computer modeling approach to study SUI Induced by landing a jump. Ann Biomed Eng. 2009;37:7:1425-1433. https://doi.org/10.1007/s10439-009-9705-2
  46. Peng Y, Khavari R, Nakib NA, Boone TB, Zhang Y. Assessment of urethral support using MRI-derived computational modeling of the female pelvis. Int Urogynecol J. 2016;27:2:205-212. https://doi.org/10.1007/s00192-015-2804-8
  47. Dias N, Peng Y, Khavari R, Nakib NA, Sweet RM, Timm GW, Erdman AG, Boone TB, Zhang Y. Pelvic floor dynamics during high-impact athletic activities: A computational modeling study. Clin Biomech (Bristol, Avon). 2017;41:20-27.  https://doi.org/10.1016/j.clinbiomech.2016.11.003
  48. Noblett KL, Jensen JK, Ostergard DR. The relationship of body mass index to intra-abdominal pressure as measured by multichannel cystometry. Int Urogynecol J Pelvic Floor Dysfunct. 1997; 8:6:323-326.  https://doi.org/10.1007/BF02765589
  49. Chanda A, Unnikrishnan V, Richter HE, Lockhart ME. A biofidelic computational model of the female pelvic system to understand effect of bladder fill and progressive vaginal tissue stiffening due to prolapse on anterior vaginal wall. Int J Numer Method Biomed Eng. 2016;32:11.  https://doi.org/10.1002/cnm.2767
  50. Silva MET, Bessa JNM, Parente MPL, Mascarenhas T, Natal Jorge RM, Fernandes AA. Effect of mesh anchoring technique in uterine prolapse repair surgery: A finite element analysis. J Biomech. 2021;127:110649. https://doi.org/10.1016/j.jbiomech.2021.110649
  51. Silva MET, Bessa JNM, Rynkevic R, Parente MPL, Saraiva MT, Natal Jorge RM, Fernandes AA. Simulation of vaginal uterosacral ligament suspension damage, mimicking a mesh-augmented apical prolapse repair. Proc Inst Mech Eng H. 2022:9544119221074567. https://doi.org/10.1177/09544119221074567
  52. Jeanditgautier E, Mayeur O, Brieu M, Lamblin G, Rubod C, Cosson M. Mobility and stress analysis of different surgical simulations during a sacral colpopexy, using a finite element model of the pelvic system. Int Urogynecol J. 2016;27:6:951-957.  https://doi.org/10.1007/s00192-015-2917-0
  53. Silva MET, Brandão S, Parente MP, Mascarenhas T, Natal Jorge RM. Establishing the biomechanical properties of the pelvic soft tissues through an inverse finite element analysis using magnetic resonance imaging. Proc Inst Mech Eng H. 2016;230:4:298-309.  https://doi.org/10.1177/0954411916630571
  54. Silva MET, Parente MPL, Brandão S, Mascarenhas T, Natal Jorge RM. Characterization of the passive and active material parameters of the pubovisceralis muscle using an inverse numerical method. J Biomech. 2018;71:100-110.  https://doi.org/10.1016/j.jbiomech.2018.01.033
  55. Zhang Y, Bajaj C, Sohn BS. 3D Finite element meshing from imaging data. Comput Methods Appl Mech Eng. 2005;194:48-49:5083-5106. https://doi.org/10.1016/j.cma.2004.11.026
  56. Zijta FM, Froeling M, van der Paardt MP, Lakeman MM, Bipat S, van Swijndregt AD, Strijkers GJ, Nederveen AJ, Stoker J. Feasibility of diffusion tensor imaging (DTI) with fibre tractography of the normal female pelvic floor. Eur Radiol. 2011;21:6:1243-1249. https://doi.org/10.1007/s00330-010-2044-8
  57. Rousset P, Delmas V, Buy JN, Rahmouni A, Vadrot D, Deux JF. In vivo visualization of the levator ani muscle subdivisions using MR fiber tractography with diffusion tensor imaging. J Anat. 2012;221:3:221-228.  https://doi.org/10.1111/j.1469-7580.2012.01538.x
  58. Voorham-van der Zalm PJ, Voorham JC, van den Bos TW, Ouwerkerk TJ, Putter H, Wasser MN, Webb A, DeRuiter MC, Pelger RC. Reliability and differentiation of pelvic floor muscle electromyography measurements in healthy volunteers using a new device: the Multiple Array Probe Leiden (MAPLe). Neurourol Urodyn. 2013;32:4:341-348.  https://doi.org/10.1002/nau.22311

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.