The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Kulikova M.S.

National Medical Research Center for Therapy and Preventive Medicine

Eganyan R.A.

National Medical Research Center for Therapy and Preventive Medicine

Impact of alcohol consumption on nature of nutrition, metabolism and human target organs. Part 1. Metabolic dysfunction

Authors:

Kulikova M.S., Eganyan R.A.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2024;27(8): 87‑93

Read: 1233 times


To cite this article:

Kulikova MS, Eganyan RA. Impact of alcohol consumption on nature of nutrition, metabolism and human target organs. Part 1. Metabolic dysfunction. Russian Journal of Preventive Medicine. 2024;27(8):87‑93. (In Russ.)
https://doi.org/10.17116/profmed20242708187

References:

  1. Hendriks HF. Alcohol and Human Health: What Is the Evidence? Annual Review of Food Science and Technology. 2020;11:1-21.  https://doi.org/10.1146/annurev-food-032519-051827
  2. Khaderi SA. Introduction: Alcohol and Alcoholism. Clinics in Liver Disease. 2019;3:1-10.  https://doi.org/10.1016/j.cld.2018.09.009
  3. World Health Organization. Global Status Report on Alcohol and Health 2018. WHO: Geneva, Switzerland; 2018. Accessed May 31, 2024. https://movendi.ngo/wp-content/uploads/2019/11/9789241565639-eng.pdf
  4. Manthey J, Shield KD, Rylett M, et al. Global alcohol exposure between 1990 and 2017 and forecasts until 2030: A modelling study. The Lancet. 2019;393(10190):2493-2502. https://doi.org/10.1016/s0140-6736(18)32744-2
  5. Shield K, Manthey J, Rylett M, et al. National, regional, and global burdens of disease from 2000 to 2016 attributable to alcohol use: A comparative risk assessment study. The Lancet. Public Health. 2020;5(1):e51-e61.  https://doi.org/10.1016/S2468-2667(19)30231-2
  6. Koncepciya gosudarstvennoj politiki po snizheniyu masshtabov zloupotrebleniya alkogolem i profilaktike alkogolizma sredi naseleniya Rossijskoj Federacii. Rasporyazhenie Pravitel’stva Rossijskoj Federacii ot 30 dekabrya 2009 g. №2128-r. Sobranie zakonodatel’stva Rossijskoj Federacii. 2010;2. Accessed May 31, 2024. (In Russ.). https://szrf.pravo.gov.ru/
  7. Berdzuli N, Ferreira-Borges C, Gual A, Rehm J. Alcohol Control Policy in Europe: Overview and Exemplary Countries. International Journal of Environmental Research and Public Health. 2020;17(21):8162. https://doi.org/10.3390/ijerph17218162
  8. Danilova I, Shkolnikov VM, Andreev E, et al. The changing relation between alcohol and life expectancy in Russia in1965-2017. Drug and Alcohol Review. 2020;39(7):790-796.  https://doi.org/10.1111/dar.13034
  9. Griswold MG, Fullman N, Hawley C, et al. Alcohol use and burden for 195 countries and territories, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet. 2018;392(10152):1015-1035. https://doi.org/10.1016/S0140-6736(18)31310-2
  10. World Health Organization. Regional Office for Europe. Alcohol Policy Impact Case Study: The Effects of Alcohol Control Measures on Mortality and Life Expectancy in the Russian Federation. WHO: Geneva, Switzerland; 2019.
  11. Institut po izmereniyu pokazatelej zdorov’ya i ocenke sostoyaniya zdorov’ya. Set’ chelovecheskogo razvitiya. Vsemirny’j bank. Global’noe bremya boleznej: regional’noe izdanie dlya Evropy’ i Central’noj Azii. Accessed May 31, 2024. (In Russ.). www-wdsworldbank.org/external/
  12. Yao XI, Ni MY, Cheung F, et al. Change in moderate alcohol consumption and quality of life: evidence from 2 population-based cohorts. CMAJ: Canadian Medical Association Journal. 2019;191(27):E753-E760. https://doi.org/10.1503/cmaj.181583
  13. Tadokoro T, Morishita A, Himoto T, et al. Nutritional Support for Alcoholic Liver Disease. Nutrients. 2023;15(6):1360. https://doi.org/10.3390/nu15061360
  14. Hamaguchi M, Obora A, Okamura T, et al. Changes in metabolic complication in patients with alcoholic fatty liver disease monitoring over two decades: NAGALA study. BMJ Open Gastroenterology. 2020;7:e0000359. https://doi.org/10.1136/bmjgast-2019-000359
  15. Lu Y, Cederbraum AI. Cytochrom P-450s and Alcoholic Liver disease. Current Pharmaceutical Design. 2018;24:1502-1517. https://doi.org/10.2174/1381612824666180410091511
  16. Tsutsumi T, Esam M, Kawaguchi T, et al. MAFLD better predicts the progression of atherosclerotic cardiovascular risk then NAFLD. Generalized estimating equation approach. Hepatology Research. 2021;51(11):1115-1128. https://doi.org/10.1111/hepr.13685
  17. Yamamura S, Esam M, Kawaguchi T, et al. MAFLF identifies patients with significant hepatic fibroses better than NAFLD. Liver International. 2020; 40(12):3018-3030. https://doi.org/10.1111/liv.14675
  18. Joseph PV, Zhou Y, Brooks B, et al. Relationships among Alcohol Drinking Patterns, Macronutrient Composition, and Caloric Intake: National Health and Nutrition Examination Survey 2017—2018. Alcohol and Alcoholism (Oxford, Oxfordshire). 2022;57(5):559-565.  https://doi.org/10.1093/alcalc/agac009
  19. Schrieks IC, Stafleu A, Griffioen-Roose S, et al. Moderate alcohol consumption stimulates food intake and food reward of safoury foods. Appetite. 2015;89:77-83.  https://doi.org/10.1016/j.appet2015.01.021
  20. Siorhi S, Van Cleef A, Davis JF. Binge-like intake of NFD attenuates alcohol intake in rats. Physiology and Behavior. 2017;178:187-195.  https://doi.org/10.1016/j.physbeh.2016.10.006
  21. Chen TC, Clark J, Ridders M, et al. National health and Nutritional examination survey 2015-2018 sample-design and estimation procedures. Vital and Health Statistics. Series 2. Data Evaluation and Methods Research. 2020;2:1-35. 
  22. Mitkin NA, Unguryanu TN, Malyutina S, et al. Association between Alcohol Consumption and Body Composition in Russian Adults and Patients Treated for Alcohol-Related Disorders: The Know Your Heart Cross-Sectional Study. International Journal of Environmental Research and Public Health. 2023;20(4):2905. https://doi.org/10.3390/ijerph20042905
  23. Coker CR, Keller BN, Arnold AC, et al. Impact of High Fat Diet and Ethanol Consumption on Neurocircuitry Regulating Emotional Processing and Metabolic Function. Frontiers in Behavioral Neuroscience. 2021;14:601111. https://doi.org/10.3389/fnbeh.2020.601111
  24. Levine JA, Harris MM, Morgan MY. Energy Expenditure in Chronic Alcohol Abuse. European Journal of Clinical Investigation. 2000;30(9):779-786.  https://doi.org/10.1046/j.1365-2362.2000.00708.x
  25. Addolorato G, Capristo E, Graco AV, et al. Body composition changes by chronic ethanol abuse: evaluation by dual energy X-ray absorptiometry. The American Journal of Gastroenterology. 2000;95:223-227. 
  26. French MT, Naton EC, Fang H, et al. Alcohol consumption and body weight. Health Economics. 2010;19:814-832.  https://doi.org/10.1002/hec.1521
  27. Lieber CS. Alcohol: its metabolism and interaction with nutrients. Annual Review of Nutrition. 2000;20:395-430.  https://doi.org/10.1146/annurev.nutr.20.1.395
  28. Styskel B, Natarajan Y, Kanwal F. Nutrition and Alcoholic Liver Disease: An Update. Clinics in Liver Disease. 2019;23:99114. https://doi.org/10.1016/j.cld.2018.09.012
  29. Nicolás JM, Fernández-Solà J, Fatjó F, et al. Increased Circulating Leptin Levels in Chronic Alcoholism. Alcoholism: Clinical and Experimental Research. 2001;25(1):83-88.  https://doi.org/10.1111/j.1530-0277.2001.tb02130.x
  30. Obradovic T, Meadows GG. Chronic Ethanol Consumption Increases Plasma Leptin Levels and Alters Leptin Receptors in the Hypothalamus and the Perigonadal Fat of C57BL/6 Mice. Alcoholism: Clinical and Experimental Research. 2002;26(2):255-262.  https://doi.org/10.1111/j.1530-0277.2002.tb02532.x
  31. Khoroshunova EA, Samoilova YG, Matveeva MV, et al. Current methods for sarcopenia diagnosis in patients with impaired carbohydrate metabolism. Russian Journal of Preventive Medicine. 2022;25(10):116-121. (In Russ.). https://doi.org/10.17116/profmed202225101116
  32. Yu W, Ma Y, Shrivastava SK, et al. Chronic alcohol exposure induces hepatocyte damage by inducing oxidative stress, SATB2 and stem cell-like characteristics, and activating lipogenesis. Journal of Cellular and Molecular Medicine. 2022;26:2119-2131. https://doi.org/10.1111/jcmm.17235
  33. Wang W, Shang H, Li J, et al. Four Different Structural Dietary Polyphenols, Especially Dihydromyricetin, Possess Superior Protective Effect on Ethanol-Induced ICE-6 and AML-12 Cytotoxicity: The Role of CYP2E1 and Keap1-Nrf2 Pathways. Journal of Agricultural and Food Chemistry. 2023; 71:1518-1530. https://doi.org/10.1021/acs.jafc.2c06478
  34. Patel D, Rathaur P, Parwani K, et al. In Vitro, in Vivo, and in Silico Analysis of Synbiotics as Preventive Interventions for Lipid Metabolism in Ethanol-Induced Adipose Tissue Injury. Lipids in Health and Disease. 2023; 22(1):49.  https://doi.org/10.1186/s12944-023-01809-z
  35. Tadokoro T, Morishita A, Masaki T. Diagnosis and Therapeutic Management of Liver Fibrosis by MicroRNA. International Journal of Molecular Sciences. 2021;22(15):8139. https://doi.org/10.3390/ijms22158139
  36. Borrelli A, Bonelli P, Tuccillo FM, et al. Role of gut microbiota and oxidative stress in the progression of nonalcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic. Redox Biology. 2018;15:467-479.  https://doi.org/10.1016/j.redox.2018.01.009
  37. Engen PA, Green SJ, Voigt RM, et al. The gastrointenstinal Microbioma: Alcohol Effects on the composition of Intenstinal Microbioma. Alcohol Research: Current Reviews. 2015;37:223-234. 
  38. Patel D, Sharma D, Mandal P. Gut Microbiota: Target for Modulation of Gut-Liver-Adipose Tissue Axis in Ethanol-Induced Liver Disease. Edited by Michele T. Pritchard. Mediators of Inflammation. 2022;2022:4230599. https://doi.org/10.1155/2022/4230599
  39. Gao B, Duan Y, Lang S, et al. Functional microbiomics reveals alterations of the gut microbiome and host co-metabolism in patients with alcoholic hepatitis. Hepatology Communications. 2020;4(8):1168-1182. https://doi.org/10.1002/hep4.1537
  40. Yan AW, Fouts DE, Brandl J, et al. Enteric dysbiosis associated with a mouse model of alcoholic liver disease. Hepatology (Baltimore, Md.). 2011;53(1):96-105.  https://doi.org/10.1002/hep.24018
  41. Queipo-Ortuño MI, Boto-Ordóñez M, Murri M, et al. Influence of red wine polyphenol and ethanol ecology of gut microbiota and biochemical markers. American Journal of Clinical Nutrition. 2012;95(6):1323-1334. https://doi.org/10.3945/ajcn.111.027847
  42. Dasarathy S. Nutrition and Alcoholic Liver Disease: Effects of Alcoholism on Nutrition, Effects of Nutrition on ALD and Nutritional Therapies for ALD. Clinics in Liver Disease. 2016;176(3):535-550.  https://doi.org/10.1016/j.cld.2016.02.010
  43. Qui J, Thapalliya S, Runcans A, et al. Hyperammonemia in cirrhosis induces transperitoneal regulation of myostatin by NF-kappaB-mediated mechanism. Proceedings of the National Academy of Sciences of the United States of America. 2013;110;45:118162-18167. https://doi.org/10.1073/pnas.1317049110
  44. Coker CR, Keller BN, Arnold AC, et al. Impact of High Fat Diet and Ethanol Consumption on Neurocircuitry Regulating Emotional Processing and Metabolic Function. Frontiers in Behavioral Neuroscience. 2021;14:601111. https://doi.org/10.3389/fnbeh.2020.601111

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.