The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Tsoriev T.T.

National Medical Research Center for Therapy and Preventive Medicine

Skripnikova I.A.

National Medical Research Center for Therapy and Preventive Medicine

Kosmatova O.V.

National Medical Research Center for Therapy and Preventive Medicine

Yaralieva E.K.

National Medical Research Center for Therapy and Preventive Medicine

The role of quantitative body composition analysis in population in the assessment and monitoring of cardiovascular risk metabolic factors

Authors:

Tsoriev T.T., Skripnikova I.A., Kosmatova O.V., Yaralieva E.K.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2024;27(12): 128‑134

Read: 1095 times


To cite this article:

Tsoriev TT, Skripnikova IA, Kosmatova OV, Yaralieva EK. The role of quantitative body composition analysis in population in the assessment and monitoring of cardiovascular risk metabolic factors. Russian Journal of Preventive Medicine. 2024;27(12):128‑134. (In Russ.)
https://doi.org/10.17116/profmed202427121128

Recommended articles:
The significance of exogenous nitrate and nitrite of plant origin for vascular health. Russian Journal of Preventive Medi­cine. 2024;(11):141-146
Cuffless methods of blood pressure measurements. Review of modern technologies. Russian Journal of Preventive Medi­cine. 2024;(12):156-162

References:

  1. Dos Santos Sena B, da Silva Pastich Gonçalves FCL, Maio R, et al. Visceral adiposity indices and cardiometabolic risk markers in patients with hypertension. Archives of Endocrinology and Metabolism. 2023;67(2):224-232.  https://doi.org/10.20945/2359-3997000000536
  2. Ali N, Mohanto NC, Nurunnabi SM, et al. Prevalence and risk factors of general and abdominal obesity and hypertension in rural and urban residents in Bangladesh: a cross-sectional study. BMC Public Health. 2022;22(1):1707. https://doi.org/10.1186/s12889-022-14087-8
  3. Chumakova GA, Kuznetsova TYu, Druzhilov MA, et al. Visceral adiposity as a global factor of cardiovascular risk. Rossijskij kardiologicheskij zhurnal. 2018;23(5):7-14. (In Russ.). https://doi.org/10.15829/1560-4071-2018-5-7-14
  4. Zheng D, Zhao C, Ma K, et al. Association between visceral adiposity index and risk of diabetes and prediabetes: Results from the NHANES (1999-2018). PLoS One. 2024;19(4):e0299285. https://doi.org/10.1371/journal.pone.0299285
  5. Samoilova YuG, Matveeva MV, Khoroshunova EA, et al. Cardiometabolic risk factors in patients with type 2 diabetes and sarcopenia. Kardiovaskuljarnaja terapija i profilaktika. 2024;23(1):3655. (In Russ.). https://doi.org/10.15829/1728-8800-2024-3655
  6. Adab P, Pallan M, Whincup PH. Is BMI the best measure of obesity? BMJ. 2018;360:k1274. https://doi.org/10.1136/bmj.k1274
  7. Sachdev HS, Fall CH, Osmond C, et al. Anthropometric indicators of body composition in young adults: relation to size at birth and serial measurements of body mass index in childhood in the New Delhi birth cohort. American Journal of Clinical Nutrition. 2005;82(2):456-466.  https://doi.org/10.1093/ajcn.82.2.456
  8. Wells JC, Williams JE, Fewtrell M, et al. A simplified approach to analysing bio-electrical impedance data in epidemiological surveys. International Journal of Obesity. 2007;31(3):507-514.  https://doi.org/10.1038/sj.ijo.0803441
  9. McAuley PA, Kokkinos PF, Oliveira RB, et al. Obesity paradox and cardiorespiratory fitness in 12,417 male veterans aged 40 to 70 years. Mayo Clinic Proceedings. 2010;85(2):115-121.  https://doi.org/10.4065/mcp.2009.0562
  10. Nightingale CM, Rudnicka AR, Owen CG, et al. Patterns of body size and adiposity among UK children of South Asian, black African-Caribbean and white European origin: Child Heart And health Study in England (CHASE Study). International Journal of Epidemiology. 2011;40(1):33-44.  https://doi.org/10.1093/ije/dyq180
  11. Rothney MP, Xia Y, Wacker WK, et al. Precision of a new tool to measure visceral adipose tissue (VAT) using dual-energy X-Ray absorptiometry (DXA). Obesity (Silver Spring). 2013;21(1):E134-136.  https://doi.org/10.1002/oby.20140
  12. Shi S, Chen W, Jiang Y, et al. A more accurate method to estimate muscle mass: A new estimation equation. Journal of Cachexia, Sarcopenia and Muscle. 2023;14(4):1753-1761. https://doi.org/10.1002/jcsm.13254
  13. Després JP. Body fat distribution and risk of cardiovascular disease: an update. Circulation. 2012;126:1301-1313. https://doi.org/10.1161/CIRCULATIONAHA.111.067264
  14. Landsberg L, Aronne LJ, Beilin LJ, et al. Obesity-related hypertension: pathogenesis, cardiovascular risk, and treatment: a position paper of the Obesity Society and the American Society of Hypertension. Journal of Clinical Hypertension. 2013;15:14-33.  https://doi.org/10.1111/jch.12049
  15. Ruiz Hurtado G, Ruilope L. Hypertension and obesity: correlates with renin-angiotensin-aldosterone system and uric acid. Journal of Clinical Hypertension. 2014;16:559-560.  https://doi.org/10.1111/jch.12356
  16. Donataccio MP, Vanzo A, Bosello O. Obesity paradox and heart failure. Eating and Weight Disorders: EWD. 2021;26(6):1697-1707. https://doi.org/10.1007/s40519-020-00982-9
  17. Dwivedi AK, Dubey P, Cistola DP, et al. Association Between Obesity and Cardiovascular Outcomes: Updated Evidence from Meta-analysis Studies. Current Cardiology Reports. 2020;22(4):25.  https://doi.org/10.1007/s11886-020-1273-y
  18. De Lorenzo A, Pellegrini M, Gualtieri P, et al. The Risk of Sarcopenia among Adults with Normal-Weight Obesity in a Nutritional Management Setting. Nutrients. 2022;14(24):5295. https://doi.org/10.3390/nu14245295
  19. Zuo X, Li X, Tang K, et al. Sarcopenia and cardiovascular diseases: A systematic review and meta-analysis. Journal of Cachexia, Sarcopenia and Muscle. 2023;14(3):1183-1198. https://doi.org/10.1002/jcsm.13221
  20. Sasaki KI, Fukumoto Y. Sarcopenia as a comorbidity of cardiovascular disease. Journal of Cardiology. 2022;79(5):596-604.  https://doi.org/10.1016/j.jjcc.2021.10.013
  21. Leem AY, Kim YS, Chung KS, et al. Sarcopenia is associated with cardiovascular risk in men with COPD, independent of adiposity. Respiratory Research. 2022;23(1):185.  https://doi.org/10.1186/s12931-022-02109-3
  22. Wells JCK, Shirley MK. Body composition and the monitoring of non-communicable chronic disease risk. Global Health, Epidemiology and Genomics. 2016;1:e18.  https://doi.org/10.1017/gheg.2016.9
  23. Drapkina OM, Kupreyshvili LV, Fomin VV. Body composition and its role in development of metabolic disorders and cardiovascular diseases. Kardiovaskuljarnaja terapija i profilaktika. 2017;16(5):81-85. (In Russ.). https://doi.org/10.15829/1728-8800-2017-5-81-85
  24. Dadaeva VA, Eganyan RA, Rozanov VB, et al. Body composition, physical and mental health of overweight females. Russian Journal of Preventive Medicine. 2022;25(9):60-69. (In Russ.). https://doi.org/10.17116/profmed20222509160
  25. Farmer RE, Mathur R, Schmidt AF, et al. Associations Between Measures of Sarcopenic Obesity and Risk of Cardiovascular Disease and Mortality: A Cohort Study and Mendelian Randomization Analysis Using the UK Biobank. Journal of the American Heart Association. 2019;8(13):e011638. https://doi.org/10.1161/JAHA.118.011638
  26. Ma J, Hwang SJ, McMahon GM, et al. Mid-adulthood cardiometabolic risk factor profiles of sarcopenic obesity. Obesity (Silver Spring). 2016;24(2): 526-534.  https://doi.org/10.1002/oby.21356
  27. Scott D, Chandrasekara SD, Laslett LL, et al. Associations of Sarcopenic Obesity and Dynapenic Obesity with Bone Mineral Density and Incident Fractures Over 5-10 Years in Community-Dwelling Older Adults. Calcified Tissue International. 2016;99(1):30-42.  https://doi.org/10.1007/s00223-016-0123-9
  28. Uchida S, Kamiya K, Hamazaki N, et al. Association between sarcopenia and atherosclerosis in elderly patients with ischemic heart disease. Heart and Vessels. 2020;35(6):769-775.  https://doi.org/10.1007/s00380-020-01554-8
  29. Jun JE, Kang M, Jin SM, et al. Additive effect of low skeletal muscle mass and abdominal obesity on coronary artery calcification. European Journal of Endocrinology. 2021;184(6):867-877.  https://doi.org/10.1530/EJE-20-0885
  30. Wang M, Tan Y, Shi Y, et al. Diabetes and Sarcopenic Obesity: Pathogenesis, Diagnosis, and Treatments. Frontiers in Endocrinology. 2020;11:568.  https://doi.org/10.3389/fendo.2020.00568
  31. Amarasekera AT, Chang D, Schwarz P, et al. Does vascular endothelial dysfunction play a role in physical frailty and sarcopenia? A systematic review. Age and Ageing. 2021;50(3):725-732.  https://doi.org/10.1093/ageing/afaa237
  32. Hong SH, Choi KM. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences. International Journal of Molecular Sciences. 2020;21(2):494.  https://doi.org/10.3390/ijms21020494
  33. Di Pino A, DeFronzo RA. Insulin Resistance and Atherosclerosis: Implications for Insulin-Sensitizing Agents. Endocrine Reviews. 2019;40(6): 1447-1467. https://doi.org/10.1210/er.2018-00141
  34. Evans K, Abdelhafiz D, Abdelhafiz AH. Sarcopenic obesity as a determinant of cardiovascular disease risk in older people: a systematic review. Postgraduate Medicine. 2021;133(8):831-842.  https://doi.org/10.1080/00325481.2021.1942934
  35. Shimobayashi M, Albert V, Woelnerhanssen B, et al. Insulin resistance causes inflammation in adipose tissue. Journal of Clinical Investigation. 2018; 128(4):1538-1550. https://doi.org/10.1172/JCI96139
  36. Gao X, He X, Luo B, et al. Angiotensin II increases collagen I expression via transforming growth factor-beta1 and extracellular signal-regulated kinase in cardiac fibroblasts. European Journal of Pharmacology. 2009;606(1-3):115-120.  https://doi.org/10.1016/j.ejphar.2008.12.049
  37. Huang XC, Huang YL, Guo YT, et al. An experimental study for quantitative assessment of fatty infiltration and blood flow perfusion in quadriceps muscle of rats using IDEAL-IQ and BOLD-MRI for early diagnosis of sarcopenia. Experimental Gerontology. 2023;183:112322. https://doi.org/10.1016/j.exger.2023.112322
  38. Liu C, Wong PY, Chung YL, et al. Deciphering the «obesity paradox» in the elderly: A systematic review and meta-analysis of sarcopenic obesity. Obesity Reviews. 2023;24(2):e13534. https://doi.org/10.1111/obr.13534
  39. Tałałaj M, Bogołowska-Stieblich A, Wąsowski M, et al. The influence of body composition and fat distribution on circadian blood pressure rhythm and nocturnal mean arterial pressure dipping in patients with obesity. PLoS One. 2023;18(1):e0281151. https://doi.org/10.1371/journal.pone.0281151
  40. Rathnayake N, Alwis G, Lenora J, et al. Associations between body composition and cardiovascular disease risk in pre- and postmenopausal women. Journal of Health, Population, and Nutrition. 2023;42(1):110.  https://doi.org/10.1186/s41043-023-00455-6
  41. Freitas ATA, Donovan Giraldo AE, Pravatta Rezende G, et al. Body composition in women with premature ovarian insufficiency using hormone therapy and the relation to cardiovascular risk markers: A case-control study. Clinical Endocrinology. 2021;94(1):111-118.  https://doi.org/10.1111/cen.14331
  42. Ozen E, Mihaylova R, Weech M, et al. Association between dietary saturated fat with cardiovascular disease risk markers and body composition in healthy adults: findings from the cross-sectional BODYCON study. Nutrition and Metabolism. 2022;19(1):15.  https://doi.org/10.1186/s12986-022-00650-y
  43. Penson PE, Pirro M, Banach M. LDL-C: lower is better for longer-even at low risk. BMC Medicine. 2020;18(1):320.  https://doi.org/10.1186/s12916-020-01792-7
  44. Schwab U, Lauritzen L, Tholstrup T, et al. Effect of the amount and type of dietary fat on cardiometabolic risk factors and risk of developing type 2 diabetes, cardiovascular diseases, and cancer: a systematic review. Food and Nutrition Research. 2014;58:25145. https://doi.org/10.3402/fnr.v58.25145
  45. Ozen E, Mihaylova RG, Lord NJ, et al. Association between APOE Genotype with Body Composition and Cardiovascular Disease Risk Markers Is Modulated by BMI in Healthy Adults: Findings from the BODYCON Study. International Journal of Molecular Sciences. 2022;23(17):9766. https://doi.org/10.3390/ijms23179766
  46. Sneed NM, Morrison SA. Body Composition Methods in Adults with Type 2 Diabetes or at Risk for T2D: a Clinical Review. Current Diabetes Reports. 2021;21(5):14.  https://doi.org/10.1007/s11892-021-01381-9
  47. Bouchi R, Takeuchi T, Akihisa M, et al. High visceral fat with low subcutaneous fat accumulation as a determinant of atherosclerosis in patients with type 2 diabetes. Cardiovascular Diabetology. 2015;14:136.  https://doi.org/10.1186/s12933-015-0302-4
  48. Haidar A, Srikanthan P, Watson K, et al. Associations Between Visceral Fat, Abdominal Muscle, and Coronary Artery Calcification: A Cross-Sectional Analysis of the Multi-Ethnic Study of Atherosclerosis. American Journal of Cardiology. 2024;217:77-85.  https://doi.org/10.1016/j.amjcard.2024.02.030
  49. Nistor IM, Fica S, Martin SC, et al. DXA Android-to-Gynoid Ratio and Cardiovascular Risk Assessment in Age and BMI Propensity-Matched Early Postmenopausal Women. Medicina. 2024;60(7):1096. https://doi.org/10.3390/medicina60071096

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.