The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Anufrieva E.V.

Ural State Medical University

Shershnev V.N.

Institute of Industrial Ecology;
The first President of Russia B.N. Yeltsin Ural Federal University

Kovtun O.P.

Ural State Medical University

Classification trees for predicting obesity in school-aged children

Authors:

Anufrieva E.V., Shershnev V.N., Kovtun O.P.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2021;24(7): 30‑36

Read: 916 times


To cite this article:

Anufrieva EV, Shershnev VN, Kovtun OP. Classification trees for predicting obesity in school-aged children. Russian Journal of Preventive Medicine. 2021;24(7):30‑36. (In Russ.)
https://doi.org/10.17116/profmed20212407130

Recommended articles:
Features of como­rbidity pathology in young people. Russian Journal of Preventive Medi­cine. 2024;(11):63-69
Risk factors asso­ciated with myopic macu­lopathy in acquired myopia. Russian Annals of Ophthalmology. 2024;(5):35-45
Epidemiology of suicidal beha­vior in children and adolescents worldwide. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11-2):16-26
Diagnosis of neuroinfections in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11-2):51-59
Modern approaches to diagnosis and treatment of syndrome of auto­nomic dysfunction in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11-2):66-75
Inte­rnal hernias stra­ngulated in mese­nteric openings in young children. Piro­gov Russian Journal of Surgery. 2024;(11):54-59

References:

  1. World Health Organization. Report of the Commission on Ending Childhood Obesity. Geneva: WHO; 2016. Accessed December 15, 2020. (In Russ.). https://www.who.int/end-childhood-obesity/publications/echo-report/ru/
  2. Namazova-Baranova LS, Eleckaja KA, Kajtukova EV, Makarova SG. Ocenka fizicheskogo razvitija detej s rednego i starshego shkol’nogo vozrasta: analiz rezul’tatov odnomomentnogo issledovanija. Pediatricheskaja farmakologija. 2018;15(4):333-341. (In Russ.). https://doi.org/10.15690/pf.v15i4.1948
  3. Tutel’yan VA, Baturin AK, Kon’ IYa. Rasprostranennost’ ozhirenija i izbytochnoj massy tela sredi detskogo naselenija RF: Mul’ticentrovoei ssledovanie. Pediatrija. 2014;93(5):28-31.(In Russ.).
  4. Martynova IN, Vinjarskaja IV, Terleckaja RN. Voprosy istinnoj zabolevaemosti i rasprostranennosti ozhirenija sredideteji podrostkov. Rossijskij pediatricheskij zhurnal. 2016;19(1):23-28.(In Russ.).
  5. Peterkova VA, Vasyukova OV. K voprosu o novoy klassifikatsii ozhireniya u detey i podrostkov. Problemy endokrinologii. 2015;2:39-44. (In Russ.).
  6. Kovtun OP, Ustjuzhanina MA. Molekuljarno-geneticheskie osnovy formirovanija ozhirenija i svjazannyh s nim zabolevanij u detej. Medicinskaja nauka i obrazovanie Urala. 2018;1:25-29. (InRuss.).
  7. Netrebenko OK. Ukraincev SE, Mel’nikova IYu. Ozhirenie u detej: novye koncepcii i napravlenija profilaktiki. Obzor literatury. Voprosy sovremennoj pediatrii. 2017;16(5):399-405.(InRuss.). https://doi.org/10.15690/vsp.v16i5.1804
  8. Anufrieva EV, Shershnev VN, Kovtun OP. Mnogofaktornyj analiz prediktorov ozhirenija u detej shkol’nogo vozrasta. Pediatrija im. G.N. Speranskogo. 2020;99(5):195-200.(In Russ.).
  9. Maruhina OV, Berestneva OG. Razrabotka system y podderzhki prinjatija reshenija dlja vybora traektorii lechenija detej s izbytochnym vesom. Informacionnye i matematicheskie tehnologii v nauke i upravlenii. 2019;3(15):42-52. (In Russ.). https://doi.org/10.25729/2413-0133-2019-3-04
  10. Kovtun OP, Ustjuzhanina MA, Sokolova AS. Sposob prognozirovanija riska razvitija ozhirenija v detskom vozraste. Patent na izobretenie RU 2696446 S1/01.08.2019. Accessed May 17, 2021. (In Russ.). https://patenton.ru/patent/RU2696446C1
  11. Zajceva NV, Zemljanova MA, Ustinova OYu, Kir’janov DA, Kamaltdinov MR, Luzheckij KP, Babina SV, Chigvincev VM, Alekseeva AV. Sposob prognozirovanija individual’nogo riska razvitija ozhirenija u cheloveka na razlichnye po prodolzhitel’nosti periody zhizni. Patent RF na izobretenie RU 2677274 C1/16.01.2019. Accessed May 17, 2021. (In Russ.). https://rusneb.ru/catalog/000224_000128_0002677274_20190116_C1_RU/
  12. Tcoy EG, Igisheva LN, Kurenkova OV, Maksimov SA, Kazakova LM. Clinical and instrumental data complex aggregative in fatal outcome risk prognosis in newborn with congenital heart diseases. Mother and Childin Kuzbass. 2017;1(68):36-43. (In Russ.).
  13. Shah SA, Brown P, Gimeno H, Lin JP, McClelland VM. Application of Machine Learning Using Decision Trees for Prognosis of Deep Brain Stimulation of Globus Pallidus Internus for Children With Dystonia. Front Neurol. 2020;11:825.  https://doi.org/10.3389/fneur.2020.00825
  14. Suresh A, Udendhran R, Balamurgan M. Hybridized neural network and decision tree based classifier for prognostic decision making in breast cancers. Soft Computing. 2020;24(11):7947-7953. https://doi.org/10.1007/s00500-019-04066-4
  15. Lorenzo D, Ochoa M, Piulats JM, Gutiérrez C, Arias L, Català J, Grau M, Peñafiel J, Cobos E, Garcia-Bru P, Rubio MJ, Padrón-Pérez N, Dias B, Pera J, Caminal JM. Prognostic Factors and Decision Tree for Long-Term Survival in Metastatic Uveal Melanoma. Cancer Res Treat. 2018;50(4):1130-1139. https://doi.org/10.4143/crt.2017.171
  16. Dias CC, Pereira Rodrigues P, Fernandes S, Portela F, Ministro P, Martins D, Sousa P, Lago P, Rosa I, Correia L, Moura Santos P, Magro F. The risk of disabling, surgery and reoperation in Crohn’s disease — A decision tree-based approach to prognosis. PLoS One. 2017;12(2):e0172165. https://doi.org/10.1371/journal.pone.0172165
  17. Karakina ML, Shershnev VN. Mnogofaktornyj analiz»genealogicheskih markerov» u vzroslyh s pervichnymi immunodeficitami Terapevticheskij arhiv. 2016;88:4:46-52. (In Russ.). https://doi.org/10.17116/terarkh201688446-52
  18. Konstantinova ED, Varaksin AN, Zhovner IV. Opredelenie osnovnyh faktorov riska razvitija neinfekcionnyh zabolevanij: metod derev’ev klassifikacii Gigiena i sanitarija. 2013;92(5):69-72. (In Russ.).
  19. Federal’nyye klinicheskiye rekomendatsii (protokoly) povedeniy u detey s endokrinnymi zabolevaniyami. Pod red. Dedova I.I., Peterkovoy V.A. M.: Praktika; 2014. (In Russ.).
  20. World Health Organization. Growth reference 5—19 years. BMI-for age (5—19 years). Geneva: WHO; 2007. AccessedDecember 15, 2020. https://www.who.int/growthref/who2007_bmi_for_age/en//
  21. Vsemirnaja organizacija zdravoohranenija. Global’nye rekomendacii po fizicheskoj aktivnosti dlja zdorov’ja. WOZ; 2010. Accessed November 15, 2020. (In Russ.). https://www.who.int/dietphysicalactivity/publications/9789241599979/ru///
  22. Akobir Shahidi. Derev’ja reshenij: obshhie principy. Loginom; 2019. Accessed November 10, 2020. (In Russ.). https://loginom.ru/blog/decision-tree-p1
  23. Andreev I. Derev’ja reshenij — CART matematicheskij apparat. Chast’ 1. Base Group Labs; 2006. Accessed November 10, 2020. (In Russ.). https://basegroup.ru/community/articles/math-cart-part1
  24. Fawcett T. An Introduction to ROC Analysis. Pattern Recognition Letters. 2006;27(8):861-874.  https://doi.org/10.1016/j.patrec.2005.10.010
  25. Rebrova OYu. Statisticheskij analiz medicinskih dannyh. Primenenie paketa prikladnyh programm Statistica. 3-e izd. M.: Media Sfera; 2006. (In Russ.).
  26. Djuk V, JemanujelZ’ V. Informacionnye tehnologii v mediko-biologicheskih issledovanijah. SPb.: Piter; 2003. (In Russ.).
  27. Gubler EV. Informatika v patologii, klinicheskoj medicine i pediatrii. M.: Medicina; 1990. (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.