The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Minkina O.V.

Pirogov Russian National Research Medical University

Dvornikov A.S.

Pirogov Russian National Research Medical University

Skripkina P.A.

Pirogov Russian National Research Medical University

Oganesyan L.V.

Russian Medical Academy for Continuous Professional Education

Palagina V.S.

Pirogov Russian National Research Medical University

Ivanova K.S.

Pirogov Russian National Research Medical University

Skin neoplasms: modern concepts of non-invasive possibilities and prospects of diagnostics

Authors:

Minkina O.V., Dvornikov A.S., Skripkina P.A., Oganesyan L.V., Palagina V.S., Ivanova K.S.

More about the authors

Journal: Russian Journal of Preventive Medicine. 2020;23(6): 120‑128

Read: 4323 times


To cite this article:

Minkina OV, Dvornikov AS, Skripkina PA, Oganesyan LV, Palagina VS, Ivanova KS. Skin neoplasms: modern concepts of non-invasive possibilities and prospects of diagnostics. Russian Journal of Preventive Medicine. 2020;23(6):120‑128. (In Russ.)
https://doi.org/10.17116/profmed202023061120

Recommended articles:
Non-invasive auto­mated methods for the diagnosis of periorbital skin tumors. Russian Annals of Ophthalmology. 2024;(5):137-145
Clinical Case of Tattoo Pigment Dete­ction in Sentinel Lymph Nodes Against the Background of Mela­noma. Russian Journal of Clinical Dermatology and Vene­reology. 2024;(6):679-683
Clinical and dermoscopic analysis of atypical sebo­rrheic kera­tosis. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(1):64-71
Algo­rithms for morphological diagnostics of dysplastic nevus. P.A. Herzen Journal of Onco­logy. 2025;(2):83-88
Mela­noma of the maxi­llary sinus mucosa. Stomatology. 2025;(2):82-85
Spectral analysis in meta­bolomics of skin neoplasms. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(3):277-283

References:

  1. Willis CM, Britton LE, Swindells MA, Jones EM, Kemp AE. Invasive melanoma in vivo can be distinguished from basal cell carcinoma, benign naevi and healthy skin by canine olfaction: a proof‐of‐principle study of differential volatile organic compound emission. Br J Dermatol. 2016;175(5):1020-1029. https://doi.org/10.1111/bjd.14887
  2. Terushkin V, Warycha M, Levy M, Kopf AW, Cohen DE, Polsky D. Analysis of the benign to malignant ratio of lesions biopsied by a general dermatologist before and after the adoption of dermoscopy. Arch Dermatol. 2010; 146(3):343-344.  https://doi.org/10.1001/archdermatol.2010.12
  3. Menzies SW, Bischof L, Talbot H, Gutenev A, Avramidis M, Wong L, Lo KS, Mackellar G, Skladnev V, McCarthy W, Kelly J, Cranney B, Lye P, Rabinovitz H, Oliviero M, Blum A, Varol A, Virol A, De’Ambrosis B, McCleod R, Koga H, Grin C, Braun R, Johr R. The Performance of SolarScan. An Automated Dermoscopy Image Analysis Instrument for the Diagnosis of Primary Melanome. Arch Dermatol. 2005;141:1388-1396.
  4. Forsea AM, Tschandl P, del Marmol V, Zalaudek I, Soyer HP, Eurodermoscopy Working Group, Geller AC, Argenziano G. Factors driving the use of dermoscopy in Europe: a pan-European survey. Br J Dermatol. 2016; 175(6):1329-1337. https://doi.org/10.1111/bjd.14895
  5. Bafounta ML, Beauchet A, Aegerter P, Saiag P. Is dermoscopy (epiluminescence microscopy) useful for the diagnosis of melanoma? Results of a meta-analysis using techniques adapted to the evaluation of diagnostic tests. Arch Dermatol. 2001;137(10):1343-1350. https://doi.org/10.1001/archderm.137.10.1343
  6. Pehamberger H, Steiner A, Wolff K. In vivo epiluminescence microscopy of pigmented skin lesions. I. Pattern analysis of pigmented skin lesions. J Am Acad Dermatol. 1987;17(4):571-583.  https://doi.org/10.1016/s0190-9622(87)70239-4
  7. Friedman RJ, Rigel DS, Kopf AW. Early detection of malignant melanoma: the role of physician examination and self-examenation of the skin. CA Cancer J Clin. 1985;35(3):130-151.  https://doi.org/10.3322/canjclin.35.3.130
  8. Abbasi NR, Shaw HM, Rigel DS, Friedman RJ, McCarthy WH, Osman I, Kopf AW, Polsky D. Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria. JAMA. 2004;292(22):2771-2776. https://doi.org/10.1001/jama.292.22.2771
  9. Crob JJ, Bonerandi JJ. The «ugly duckling» sign: identification of the common chatacteristics of the nevi in an individual as a basis for melanoma screening. Arch Dermatol. 1998;134(1):103-104.  https://doi.org/10.1001/archderm.134.1.103-a
  10. Jensen JD, Elewski BE. The ABCDEF Rule: Combining the «ABCDE Rule» and the «Ugly Ducling Sign» in an Effort to Improve Patient Self-screening examinations. J Clin Aesthet Dermatol. 2015;8(2):15. 
  11. Menzies SW, Ingvar C, Crotty KA, McCarthy WH. Frequency and morphologic characteristics of invasive melanomas lacking specific surface microscopic features. Arch Dermatol. 1996;132(10):1178-1182.
  12. Bono A, Tolomio E, Trincone S, Bartoli C, Tomatis S, Carbone A, Santinami M. Micro-melanoma detection: a clinical study on 206 consecutive cases of pigmented skin lesions with a diameter https://doi.org/10.1111/j.1365-2133.2006.07396.x
  13. Unlu E, Akay BN, Erdem C. Comparison of dermatoscopic diagnostic algorithms based oncalculation: The ABCD rule of dermatoscopy, the seven-point checklist, the three-point chec-klist and the CASH algorithm in dermatoscopic evaluation of melanocytic lesions. J Dermatol. 2014;41(7):598-603.  https://doi.org/10.1111/1346-8138.12491
  14. Braun RP, Rabinovitz HS, Krischer J, Kreusch J, Oliviero M, Naldi L, Kopf AW, Saurat JH. Dermoscopy of pigmented seborrheic keratosis: a morphological study. Arch Dermatol. 2002;138(12):1556-1560. https://doi.org/10.1001/archderm.138.12.1556
  15. Henning JS, Dusza SW, Wang SQ, Marghoob AA, Rabinovitz HS, Polsky D, Kopf AW. The CASH (color, architecture, symmetry, and homogeneity) algorithm for dermoscopy. J Am Acad Dermatol. 2007;56(1):45-52.  https://doi.org/10.1016/j.jaad.2006.09.003
  16. Rosendahl C, Cameron A, McColl I, Wilkinson D. Dermatoscopy in routine practice: ‘Chaos and Clues’. Aust Fam Physician. 2012;41(7):482-487. 
  17. Rosendahl C. Dermatoscopy: Chaos and Clues. A decision algorithm for pigmented skin lesions. Practical Dermatology. 2014;23-28. 
  18. Bourne P, Rosendahl C, Keir J, Cameron A. BLINCK — a diagnostic algorithm for skin cancer diagnosis combining clinical features with dermatoscopy findings. Dermatol Pract Concept. 2012;2(2):0202a12. https://doi.org/10.5826/dpc.0202a12
  19. Rogers T, Marino M, Dusza SW, Bajaj S, Marchetti MA, Marghoob A. Triage amalgamated dermoscopic algorithm (TADA) for skin cancer screening. Dermatol Pract Concept. 2017;7(2):39-46.  https://doi.org/10.5826/dpc.0702a09
  20. Buhl T, Hansen-Hagge C, Korpas B, Kaune KM, Haas E, Rosenberger A, Schön MP, Emmert S, Haenssle HA. Integrating static and dynamic features of melanoma: The DynaMel algorithm. J Am Acad Dermatol. 2012;66(1):27-36. 
  21. Lallas A, Kyrgidis A, Koga H, Moscarella E, Tschandl P, Apalla Z, Di Stefani A. The BRAAFF checklist: a new dermoscopic algorithm for diagnosing acral melanoma. Br J Dermatol. 2015;173(4):1041-1049. https://doi.org/10.1111/bjd.14045
  22. Stevens NG, Liff JM, Weiss NS. Plantar melanoma: is the incidence of melanoma of the sole of the foot really higher in blacks than whites? Int J Cancer. 1990;15;45(4):691-693.  https://doi.org/10.1002/ijc.2910450421
  23. Saida T. Morphological and molecular uniqueness of acral melanoma. Expert Review of Dermatology. 2007;2(2):125-131.  https://doi.org/10.1586/17469872.2.2.125
  24. Reed RJ. New Concepts in Surgical Pathology of the Skin. New York: John Wiley & Sons; 1976.
  25. Bradford PT, Goldstein AM, McMaster ML, Tucker MA. Acral lentiginous melanoma: incidence and survival patterns in the United States, 1986-2005. Arch Dermatol. 2009;145(4):427-434.  https://doi.org/10.1001/archdermatol.2008.609
  26. Lv J, Dai B, Kong Y, Shen X, Kong J. Acral Melanoma in Chinese: A Clinicopathological and Prognostic Study of 142 cases. Sci Rep. 2016;6:31432. https://doi.org/10.1038/srep31432
  27. Cascinelli N, Ferrario M, Tonelli, T, Leo E. A possible new tool for clinical diagnosis of melanoma: The computer. J Am Acad Dermatol. 1987;16(2):361-367.  https://doi.org/10.1016/S0190-9622(87)70050-4
  28. Ganster H, Pinz A, Röhrer R, Wildling E, Binder M, Kittler H. Automated melanoma recognition. IEEE Transactions on Medical Imaging 2001;20(3): 233-239.  https://doi.org/10.1109/42.918473
  29. Capdehourat G, Corez A, Bazzano A, Muse P. Pigmented Skin Lesions Classification Using Dermatoscopic Images. 14th Iberoamerican Conference on Pattern Recognition, CIARP 2009, Guadalajara, Jalisco, Mexico, November 15-18; 2009.
  30. Binder M, Steiner A, Schwarz M, Knollmayer S, Wolff K, Pehamberger H. Application of an artificial neural network in epiluminescence microscopy pattern analysis of pigmented skinlesions: a pilot study. Br J Dermatol. 1994; 130(4):460-465.  https://doi.org/10.1111/j.1365-2133.1994.tb03378.x
  31. Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data. 2018;5:180161. https://doi.org/10.1038/sdata.2018.161
  32. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level Classification of Skin Cancer with Deep Neural Networks. Nature. 2017;542(7639):115-118.  https://doi.org/10.1038/nature21056
  33. Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, Schilling B, Haferkamp S, Schadendorf D, Holland-Letz T, Utikal JS, von Kalle C. Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task. Eur J Cancer. 2019;113:47-54.  https://doi.org/10.1016/j.ejca.2019.04.001
  34. Brinker TJ, Hekler A, Enk AH, Klode J, Hauschild A, Berking C, Schilling B, Haferkamp S, Schadendorf D. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. Eur J Cancer. 2019;111:148-154.  https://doi.org/10.1016/j.ejca.2019.02.005
  35. Starodubov VI, Dvornikov AS, Shevchenko AG, Lopakov KV. Perspektivy bolee rannego vyyavleniya zabolevanij po rezul’tatam oprosa pol’zovatelej internet ob ih otnoshenii k profilaktike. Sotsial’nye aspekty zdorov’ya naseleniya. 2011;3:19. (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.