The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Adamyan L.V.

Russian University of Medicine;
Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology

Pivazyan L.G.

Academician V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology

Yurkanova M.D.

Sechenov First Moscow State Medical University (Sechenov University)

Mailova K.S.

Russian University of Medicine

Stepanian A.A.

Academy of Women’s Health and Endoscopic Surgery

The role of ferroptosis in reproduction. A modern view of the problem

Authors:

Adamyan L.V., Pivazyan L.G., Yurkanova M.D., Mailova K.S., Stepanian A.A.

More about the authors

Journal: Russian Journal of Human Reproduction. 2024;30(5): 35‑45

Read: 2401 times


To cite this article:

Adamyan LV, Pivazyan LG, Yurkanova MD, Mailova KS, Stepanian AA. The role of ferroptosis in reproduction. A modern view of the problem. Russian Journal of Human Reproduction. 2024;30(5):35‑45. (In Russ.)
https://doi.org/10.17116/repro20243005135

Recommended articles:
Comparison of the main methods of surgical treatment of patients with colo­rectal endo­metriosis. Russian Bulletin of Obstetrician-Gynecologist. 2024;(6):118-123

References:

  1. Adamyan LV, Pivazyan LG, Mailova KS. The role of ferroptosis in the pathogenesis and progression of endometriosis. History of the question and current evidence. Russian Journal of Human Reproduction. 2023;29(5):92-101. (In Russ.). https://doi.org/10.17116/repro20232905192
  2. Adamyan LV, Burgova EN, Mikoyan VD, Vanin AF, Ionova RM, Cheprasova GP, Gasparyan SA. Violation of the electron transport chain as a manifestation of oxidative stress in endometriosis. Russian Journal of Human Reproduction. 2007;13(5):103-107. (In Russ.).
  3. Adamyan LV, Sonova MM, Arslanyan KN, Loginova ON, Kharchenko EI. Oxidative stress and endometriosis: a review of the literature. Attending Doctor. 2019;12:20-25. (In Russ.). https://doi.org/10.26295/OS.2019.72.92.003
  4. Vanin A, Burgova E, Adamyan L. Dinitrosyl iron complexes with glutathione suppress surgically induced experimental endometriosis in rats. Austin Journal of Reproductive Medicine & Infertility. 2015;2:1019-1031. https://doi.org/10.1016/j.ejphar.2014.01.002
  5. Burgova E, Tkachev N, Mikoyan V, Adamyan L, Stepanyan A, Vanin A. Dinitrosyl iron complexes with glutathione suppress experimental endometriosis in rats. European Journal of Pharmacology. 2014;727:140-147.  https://doi.org/10.1016/j.ejphar.2014.01.002
  6. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060-1072. PMID: 22632970; PMCID: PMC3367386. https://doi.org.10.1016/j.cell.2012.03.042
  7. Stoyanovsky DA, Tyurina YY, Shrivastava I, Bahar I, Tyurin VA, Protchenko O, Jadhav S, Bolevich SB, Kozlov AV, Vladimirov YA, Shvedova AA, Philpott CC, Bayir H, Kagan VE. Iron catalysis of lipid peroxidation in ferroptosis: Regulated enzymatic or random free radical reaction? Free Radical Biology and Medicine. 2019; 133:153-161.  https://doi.org/10.1016/j.freeradbiomed.2018.09.008
  8. Stockwell BR. Ferroptosis turns 10: Emerging mechanisms, physiological functions, and therapeutic applications. Cell. 2022;185(14): 2401-2421. https://doi.org/10.1016/j.cell.2022.06.003
  9. Deng L, He S, Guo N, Tian W, Zhang W, Luo L. Molecular mechanisms of ferroptosis and relevance to inflammation. Inflammation Research. 2023;72(2):281-299.  https://doi.org/10.1007/s00011-022-01672-1
  10. Yan H, Talty R, Johnson CH. Targeting ferroptosis to treat colorectal cancer. Trends in Cell Biology. 2023;33(3):185-188. Epub 2022 Dec 03. PMID: 36473802. https://doi.org/10.1016/j.tcb.2022.11.003
  11. Li D, Wang Y, Dong C, Chen T, Dong A, Ren J, Li W, Shu G, Yang J, Shen W, Qin L, Hu L, Zhou J. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1. Oncogene. 2023;42(2):83-98.  https://doi.org/10.1038/s41388-022-02537-x
  12. Cai W, Liu L, Shi X, Liu Y, Wang J, Fang X, Chen Z, Ai D, Zhu Y, Zhang X. Alox15/15-HpETE Aggravates Myocardial Ischemia-Reperfusion Injury by Promoting Cardiomyocyte Ferroptosis. Circulation. 2023;147(19):1444-1460. https://doi.org/10.1161/CIRCULATIONAHA.122.060257
  13. Gao Y, Wang T, Cheng Y, Wu Y, Zhu L, Gu Z, Wu Y, Cai L, Wu Y, Zhang Y, Gao C, Li L, Li J, Li Q, Wang Z, Wang Y, Wang F, Luo C, Tao L. Melatonin ameliorates neurological deficits through MT2/IL-33/ferritin H signaling-mediated inhibition of neuroinflammation and ferroptosis after traumatic brain injury. Free Radical Biology and Medicine. 2023;199:97-112.  https://doi.org/10.1016/j.freeradbiomed.2023.02.014
  14. Sanz AB, Sanchez-Niño MD, Ramos AM, Ortiz A. Regulated cell death pathways in kidney disease. Nature Reviews Nephrology. 2023; 19(5):281-299.  https://doi.org/10.1038/s41581-023-00694-0
  15. Li S, Zhou Y, Huang Q, Fu X, Zhang L, Gao F, Jin Z, Wu L, Shu C, Zhang X, Xu W, Shu J. Iron overload in endometriosis peritoneal fluid induces early embryo ferroptosis mediated by HMOX1. Cell Death Discoveries. 2021;7(1):355.  https://doi.org/10.1038/s41420-021-00751-2
  16. Meihe L, Shan G, Minchao K, Xiaoling W, Peng A, Xili W, Jin Z, Huimin D. The Ferroptosis-NLRP1 Inflammasome: The Vicious Cycle of an Adverse Pregnancy. Frontiers in Cell and Developmental Biology. 2021;9:707959. https://doi.org/10.3389/fcell.2021.707959
  17. Wang F, Liu Y, Ni F, Jin J, Wu Y, Huang Y, Ye X, Shen X, Ying Y, Chen J, Chen R, Zhang Y, Sun X, Wang S, Xu X, Chen C, Guo J, Zhang D. BNC1 deficiency-triggered ferroptosis through the NF2-YAP pathway induces primary ovarian insufficiency. Nature Communications. 2022;13(1):5871. https://doi.org/10.1038/s41467-022-33323-8
  18. Zhang D, Yi S, Cai B, Wang Z, Chen M, Zheng Z, Zhou C. Involvement of ferroptosis in the granulosa cells proliferation of PCOS through the circRHBG/miR-515/SLC7A11 axis. Annals of Translational Medicine. 2021 Aug;9(16):1348. PMID: 34532485; PMCID: PMC8422124. https://doi.org/10.21037/atm-21-4174
  19. Liao T, Xu X, Ye X, Yan J. DJ-1 upregulates the Nrf2/GPX4 signal pathway to inhibit trophoblast ferroptosis in the pathogenesis of preeclampsia. Scientific Reports. 2022;12(1):2934. https://doi.org/10.1038/s41598-022-07065-y
  20. Hu M, Zhang Y, Ma S, Li J, Wang X, Liang M, Sferruzzi-Perri AN, Wu X, Ma H, Brännström M, Shao LR, Billig H. Suppression of uterine and placental ferroptosis by N-acetylcysteine in a rat model of polycystic ovary syndrome. Molecular Human Reproduction. 2021;27(12):gaab067. https://doi.org/10.1093/molehr/gaab067
  21. Dixon SJ, Winter GE, Musavi LS, Lee ED, Snijder B, Rebsamen M, Superti-Furga G, Stockwell BR. Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death. ACS Chemical Biology. 2015;10(7):1604-1609. https://doi.org/10.1021/acschembio.5b00245
  22. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, Prokisch H, Trümbach D, Mao G, Qu F, Bayir H, Füllekrug J, Scheel CH, Wurst W, Schick JA, Kagan VE, Angeli JP, Conrad M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature Chemical Biology. 2017;13(1):91-98.  https://doi.org/10.1038/nchembio.2239
  23. Zhang HL, Hu BX, Li ZL, Du T, Shan JL, Ye ZP, Peng XD, Li X, Huang Y, Zhu XY, Chen YH, Feng GK, Yang D, Deng R, Zhu XF. PKCβII phosphorylates ACSL4 to amplify lipid peroxidation to induce ferroptosis. Nature Cell Biology. 2022;24(1):88-98.  https://doi.org/10.1038/s41556-021-00818-3
  24. Chen Z, Lin H, Wang X, Li G, Liu N, Zhang M, Shen Y. The application of approaches in detecting ferroptosis. Heliyon. 2023; 10(1):e23507. https://doi.org/10.1016/j.heliyon.2023.e23507
  25. Dierge E, Debock E, Guilbaud C, Corbet C, Mignolet E, Mignard L, Bastien E, Dessy C, Larondelle Y, Feron O. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metabolism. 2021;33(8):1701-1715. https://doi.org/10.1016/j.cmet.2021.05.016
  26. Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and Transferrin Regulate Ferroptosis. Molecular Cell. 2015;59(2): 298-308.  https://doi.org/10.1016/j.molcel.2015.06.011
  27. Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K, Wang J, Wang F, Xie D, Hu YZ, Han ZT, Zhang HH, Wang WX, Nelson PT, Chen JG, Lu Y, Man HY, Liu D, Zhu LQ. Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer’s disease. Cell Death and Differentiation. 2021;28(5):1548-1562. https://doi.org/10.1038/s41418-020-00685-9
  28. Toyokuni S. Iron and carcinogenesis: from Fenton reaction to target genes. Redox Report. 2002;7(4):189-197.  https://doi.org/10.1179/135100002125000596
  29. Chen X, Yu C, Kang R, Tang D. Iron Metabolism in Ferroptosis. Frontiers in Cell and Developmental Biology. 2020;8:590226. https://doi.org/10.3389/fcell.2020.590226
  30. Adamyan LV, Sonova MM, Loginova ON, Yarotskaya EL, Arslanyan KN. Optimization of the treatment of external genital endometriosis using antioxidant agents. Russian Journal of Human Reproduction. 2012;18(S):147. (In Russ.)
  31. Hassannia B, Vandenabeele P, Vanden Berghe T. Targeting Ferroptosis to Iron Out Cancer. Cancer Cell. 2019;35(6):830-849.  https://doi.org/10.1016/j.ccell.2019.04.002
  32. Tao W, Wang N, Ruan J, Cheng X, Fan L, Zhang P, Lu C, Hu Y, Che C, Sun D, Duan J, Zhao M. Enhanced ROS-Boosted Phototherapy against Pancreatic Cancer via Nrf2-Mediated Stress-Defense Pathway Suppression and Ferroptosis Induction. ACS Applied Materials & Interfaces. 2022;14(5):6404-6416. https://doi.org/10.1021/acsami.1c22861
  33. Tomassetti C, Johnson NP, Petrozza J, Abrao MS, Einarsson JI, Horne AW, Lee TTM, Missmer S, Vermeulen N, Zondervan KT, Grimbizis G, De Wilde RL. An International Terminology for Endometriosis, 2021. Journal of Minimally Invasive Gynecology. 2021; 28(11):1849-1859. https://doi.org/10.1016/j.jmig.2021.08.032
  34. Zondervan KT, Becker CM, Koga K, Missmer SA, Taylor RN, Viganò P. Endometriosis. Nature reviews. Disease Primers. 2018;4(1):9.  https://doi.org/10.1038/s41572-018-0008-5
  35. Lamceva J, Uljanovs R, Strumfa I. The Main Theories on the Pathogenesis of Endometriosis. International Journal of Molecular Sciences. 2023;24(5):4254. https://doi.org/10.3390/ijms24054254
  36. Rolla E. Endometriosis: advances and controversies in classification, pathogenesis, diagnosis, and treatment. F1000Research. 2019;8: F1000 Faculty Rev-529.  https://doi.org/10.12688/f1000research.14817.1
  37. Konrad L, Dietze R, Kudipudi PK, Horné F, Meinhold-Heerlein I. Endometriosis in MRKH cases as a proof for the coelomic metaplasia hypothesis? Reproduction. 2019;158(2):R41-R47.  https://doi.org/10.1530/REP-19-0106
  38. Scutiero G, Iannone P, Bernardi G, Bonaccorsi G, Spadaro S, Volta CA, Greco P, Nappi L. Oxidative Stress and Endometriosis: A Systematic Review of the Literature. Oxidative Medicine and Cellular Longevity. 2017;2017:7265238. https://doi.org/10.1155/2017/7265238
  39. Pascolo L, Pachetti M, Camillo A, Cernogoraz A, Rizzardi C, Mikus KV, Zanconati F, Salomé M, Suárez VT, Romano F, Zito G, Gianoncelli A, Ricci G. Detention and mapping of iron and toxic environmental elements in human ovarian endometriosis: A suggested combined role. Science of the Total Environment. 2023;864:161028. https://doi.org/10.1016/j.scitotenv.2022.161028
  40. Adamyan L, Pivazyan L, Krylova E, Tarlakyan V, Murvatova K. Iron metabolism markers in peritoneal fluid of patients with endometriosis: systematic review and meta-analysis. Journal of Endometriosis and Uterine Disorders. 2024;5:100061. https://doi.org/10.1016/j.jeud.2024.100061
  41. Wu Y, Yang R, Lan J, Wu Y, Huang J, Fan Q, You Y, Lin H, Jiao X, Chen H, Cao C, Zhang Q. Iron overload modulates follicular microenvironment via ROS/HIF-1α/FSHR signaling. Free Radical Biology & Medicine. 2023;196:37-52.  https://doi.org/10.1016/j.freeradbiomed.2022.12.105
  42. Burgova EN, Gasparyan SA, Cheprasova GP, Ionova RM, Serezhenkov VA, Vanin AF, Adamyan LV. Significance of indicators of active forms of transferrin and ceruloplasmin and their correction in genital endometriosis. Russian Journal of Human Reproduction. 2011;17(4):62-66. (In Russ.).
  43. Adamyan LV, Burgova EN, Serezhenkov VA, Sonova MM, Osipova AA, Arslanyan KN, Poddubnaya OM. The role of blood ironbinding proteins in antioxidant protection and their relationship with genital endometriosis. Obstetrics and Gynecology. 2009;5:37-41. (In Russ.).
  44. Adamyan LV, Burgova EN, Serezhenkov VA, Sonova MM, Tikhonova ES, Laskevich AV, Shamushia NM, Vanin AF. Changes in the structure of the active center of lactoferrin from the peritoneal fluid in patients with endometriosis. Russian Journal of Human Reproduction. 2012;3:7-10. (In Russ.).
  45. Cacciottola L, Donnez J, Dolmans MM. Can Endometriosis-Related Oxidative Stress Pave the Way for New Treatment Targets? International Journal of Molecular Sciences. 2021;22(13):7138. PMID: 34281188; PMCID: PMC8267660. https://doi.org/10.3390/ijms22137138
  46. Iwabuchi T, Yoshimoto C, Shigetomi H, Kobayashi H. Oxidative Stress and Antioxidant Defense in Endometriosis and Its Malignant Transformation. Oxidative Medicine and Cellular Longevity. 2015; 2015:848595. https://doi.org/10.1155/2015/848595
  47. Goud PT, Goud AP, Joshi N, Puscheck E, Diamond MP, Abu-Soud HM. Dynamics of nitric oxide, altered follicular microenvironment, and oocyte quality in women with endometriosis. Fertility and Sterility. 2014;102(1):151-159.  https://doi.org/10.1016/j.fertnstert.2014.03.053
  48. Li Y, Zeng X, Lu D, Yin M, Shan M, Gao Y. Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis. Human Reproduction. 2021;36(4):951-964.  https://doi.org/10.1093/humrep/deaa363
  49. Li B, Duan H, Wang S, Li Y. Ferroptosis resistance mechanisms in endometriosis for diagnostic model establishment. Reproductive Biomedicine Online. 2021;43(1):127-138.  https://doi.org/10.1016/j.rbmo.2021.04.002
  50. Li G, Lin Y, Zhang Y, Gu N, Yang B, Shan S, Liu N, Ouyang J, Yang Y, Sun F, Xu H. Endometrial stromal cell ferroptosis promotes angiogenesis in endometriosis. Cell Death Discovery. 2022;8(1):29.  https://doi.org/10.1038/s41420-022-00821-z
  51. Linkermann A, Stockwell BR, Krautwald S, Anders HJ. Regulated cell death and inflammation: an auto-amplification loop causes organ failure. Nature Reviews. Immunology. 2014;14(11):759-767. Epub 2014 Oct 17. PMID: 25324125. https://doi.org/10.1038/nri3743
  52. González-Ramos R, Van Langendonckt A, Defrère S, Lousse JC, Colette S, Devoto L, Donnez J. Involvement of the nuclear factor-κB pathway in the pathogenesis of endometriosis. Fertility and Sterility. 2010;94(6):1985-94.  https://doi.org/10.1016/j.fertnstert.2010.01.013
  53. Lee WL, Liu CH, Cheng M, Chang WH, Liu WM, Wang PH. Focus on the Primary Prevention of Intrauterine Adhesions: Current Concept and Vision. International Journal of Molecular Sciences. 2021;22(10):5175. https://doi.org/10.3390/ijms22105175
  54. Zhu Q, Yao S, Ye Z, Jiang P, Wang H, Zhang X, Liu D, Lv H, Cao C, Zhou Z, Zhou Z, Pan W, Zhao G, Hu Y. Ferroptosis contributes to endometrial fibrosis in intrauterine adhesions. Free Radical Biology & Medicine. 2023;205:151-162.  https://doi.org/10.1016/j.freeradbiomed.2023.06.001
  55. Chen JM, Huang QY, Chen WH, Lin S, Shi QY. Clinical Evaluation of Autologous and Allogeneic Stem Cell Therapy for Intrauterine Adhesions: A Systematic Review and Meta-Analysis. Frontiers in Immunology. 2022;13:899666. https://doi.org/10.3389/fimmu.2022.899666
  56. Wang J, Deng B, Liu Q, Huang Y, Chen W, Li J, Zhou Z, Zhang L, Liang B, He J, Chen Z, Yan C, Yang Z, Xian S, Wang L. Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death & Disease. 2020;11(7):574.  https://doi.org/10.1038/s41419-020-02777-3
  57. Shen M, Li Y, Wang Y, Shao J, Zhang F, Yin G, Chen A, Zhang Z, Zheng S. N6-methyladenosine modification regulates ferroptosis through autophagy signaling pathway in hepatic stellate cells. Redox Biology. 2021;47:102151. https://doi.org/10.1016/j.redox.2021.102151
  58. Zhang B, Chen X, Ru F, Gan Y, Li B, Xia W, Dai G, He Y, Chen Z. Liproxstatin-1 attenuates unilateral ureteral obstruction-induced renal fibrosis by inhibiting renal tubular epithelial cells ferroptosis. Cell Death & Disease. 2021;12(9):843.  https://doi.org/10.1038/s41419-021-04137-1
  59. Zhang Y, Liu X, Deng M, Xu C, Zhang Y, Wu D, Tang F, Yang R, Miao J. Ferroptosis induced by iron overload promotes fibrosis in ovarian endometriosis and is related to subpopulations of endometrial stromal cells. Frontiers in Pharmacology. 2022;13:930614. https://doi.org/10.3389/fphar.2022.930614
  60. Zou L, Huang J, Zhang Q, Mo H, Xia W, Zhu C, Rao M. The humanin analogue (HNG) alleviates intrauterine adhesions by inhibiting endometrial epithelial cells ferroptosis: a rat model-based study. Human Reproduction. 2023;38(12):2422-2432. https://doi.org/10.1093/humrep/dead196
  61. Shi D, Zhou X, Wang H. S14G-humanin (HNG) protects retinal endothelial cells from UV-B-induced NLRP3 inflammation activation through inhibiting Egr-1. Inflammation Research. 2021;70(10-12): 1141-1150. https://doi.org/10.1007/s00011-021-01489-4
  62. Salahuddin Z, Rafi A, Muhammad H, Aftab U, Akhtar T, Zafar MS, Shahzad M. Revolutionalizing the age old conventional treatment of psoriasis: An animal based comparative study between methylprednisolone and different doses of a novel anti-oxidant humanin analogue (HNG). International Immunopharmacology. 2022;110:108990. https://doi.org/10.1016/j.intimp.2022.108990
  63. Wang Y, Li N, Zeng Z, Tang L, Zhao S, Zhou F, Zhou L, Xia W, Zhu C, Rao M. Humanin regulates oxidative stress in the ovaries of polycystic ovary syndrome patients via the Keap1/Nrf2 pathway. Molecular Human Reproduction. 2021;27(2):gaaa081. https://doi.org/10.1093/molehr/gaaa081
  64. Nashine S, Cohen P, Chwa M, Lu S, Nesburn AB, Kuppermann BD, Kenney MC. Humanin G (HNG) protects age-related macular degeneration (AMD) transmitochondrial ARPE-19 cybrids from mitochondrial and cellular damage. Cell Death & Disease. 2017;8(7):e2951. https://doi.org/10.1038/cddis.2017.348
  65. Koninckx PR, Ussia A, Adamyan L. The role of the peritoneal cavity in adhesion formation. Fertility and sterility. 2012;97(6):1297. https://doi.org/10.1016/j.fertnstert.2012.04.017
  66. Arumugam K, Yip YC. De novo formation of adhesions in endometriosis: the role of iron and free radical reactions. Fertility and Sterility. 1995;64(1):62-64. 
  67. Kauma S, Clark MR, White C, Halme J. Production of fibronectin by peritoneal macrophages and concentration of fibronectin in peritoneal fluid from patients with or without endometriosis. Obstetrics and Gynecology. 1988;72(1):13-18. 
  68. Herrmann A, Torres-de la Roche LA, Krentel H, Cezar C, de Wilde MS, Devassy R, De Wilde RL. Adhesions after Laparoscopic Myomectomy: Incidence, Risk Factors, Complications, and Prevention. Gynecology and Minimally Invasive Therap. 2020;9(4):190-197.  https://doi.org/10.4103/GMIT.GMIT_87_20
  69. Adamyan L, Pivazyan L, Krylova E, Kurbatova K, Tarlakyan V, Stepanian A. Hyaluronic acid in the prevention of adhesions after gynecological surgery: systematic review and meta-analysis. Journal of Endometriosis and Uterine Disorders. 2024;5:100070. https://doi.org/10.1016/j.jeud.2024.100070
  70. Adamyan LV, Mikhaleva LM, Tkachev NA, Pivazyan LG, Vandysheva RA, Areshidze DA, Mailova KS. Modelling and prevention of postoperative adhesions in gynaecological and pelvic surgery in experiment: morphological and ultrastructural features. Russian Journal of Human Reproduction. 2024;30(2):43-51. (In Russ.). https://doi.org/10.17116/repro20243002143
  71. Adamyan LV, Dementyeva VO, Stepanyan AA, Asaturova AV, Arakelyan AS, Smolnikova VYu. Morphological and immunohistochemical characteristics of ovarian and endometrium tissues in patients with reduced ovarian reserve. Russian Journal of Human Reproduction. 2021;27(4):26-31. (In Russ.).
  72. Adamyan LV, Smolnikova VYu, Asaturova AV, Dementyeva VO. One-stage surgical method for activating ovarian function for the treatment of premature ovarian failure and restoration of ovarian function. Russian Federation Patent №RU2748246C1, 05/21/2021. (In Russ.).
  73. Adamyan LV, Pivazyan LG. Interdisciplinary approach and the current state of the issue of premature ovarian aging (literature review). Russian Journal of Human Reproduction. 2023;29(1):94-103. (In Russ.). https://doi.org/10.17116/repro20232901194
  74. Du R, Cheng X, Ji J, Lu Y, Xie Y, Wang W, Xu Y, Zhang Y. Mechanism of ferroptosis in a rat model of premature ovarian insufficiency induced by cisplatin. Scientific Reports. 2023;13(1):4463. https://doi.org/10.1038/s41598-023-31712-7
  75. Dai W, Xu B, Ding L, Zhang Z, Yang H, He T, Liu L, Pei X, Fu X. Human umbilical cord mesenchymal stem cells alleviate chemotherapy-induced premature ovarian insufficiency mouse model by suppressing ferritinophagy-mediated ferroptosis in granulosa cells. Free Radical Biology & Medicine. 2024;220:1-14.  https://doi.org/10.1016/j.freeradbiomed.2024.04.229
  76. Sun L, Wang H, Xu D, Yu S, Zhang L, Li X. Lapatinib induces mitochondrial dysfunction to enhance oxidative stress and ferroptosis in doxorubicin-induced cardiomyocytes via inhibition of PI3K/AKT signaling pathway. Bioengineered. 2022;13(1):48-60.  https://doi.org/10.1080/21655979.2021.2004980
  77. Huang J, Chen G, Wang J, Liu S, Su J. Platycodin D regulates high glucose-induced ferroptosis of HK-2 cells through glutathione peroxidase 4 (GPX4). Bioengineered. 2022;13(3):6627-6637. https://doi.org/10.1080/21655979.2022.2045834
  78. Javadov S. Mitochondria and ferroptosis. Current Opinion in Physiology. 2022;25:100483. https://doi.org/10.1016/j.cophys.2022.100483
  79. Hou J, Jiang C, Wen X, Li C, Xiong S, Yue T, Long P, Shi J, Zhang Z. ACSL4 as a Potential Target and Biomarker for Anticancer: From Molecular Mechanisms to Clinical Therapeutics. Frontiers in Pharmacology. 2022;13:949863. https://doi.org/10.3389/fphar.2022.949863
  80. Tang D, Kroemer G. Ferroptosis. Current Biology. 2020;30(21): R1292-R1297. https://doi.org/10.1016/j.cub.2020.09.068
  81. Li T, Tan Y, Ouyang S, He J, Liu L. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis. Gene. 2022;808:145968. https://doi.org/10.1016/j.gene.2021.145968
  82. Chen C, Wang D, Yu Y, Zhao T, Min N, Wu Y, Kang L, Zhao Y, Du L, Zhang M, Gong J, Zhang Z, Zhang Y, Mi X, Yue S, Tan X. Legumain promotes tubular ferroptosis by facilitating chaperone-mediated autophagy of GPX4 in AKI. Cell Death & Disease. 2021; 12(1):65.  https://doi.org/10.1038/s41419-020-03362-4
  83. He F, Huang X, Wei G, Lin X, Zhang W, Zhuang W, He W, Zhan T, Hu H, Yang H. Regulation of ACSL4-Catalyzed Lipid Peroxidation Process Resists Cisplatin Ototoxicity. Oxidative Medicine and Cellular Longevity. 2022;2022:3080263. https://doi.org/10.1155/2022/3080263
  84. Crowley LC, Scott AP, Marfell BJ, Boughaba JA, Chojnowski G, Waterhouse NJ. Measuring Cell Death by Propidium Iodide Uptake and Flow Cytometry. Cold Spring Harbor Protocols. 2016;2016(7). https://doi.org/10.1101/pdb.prot087163
  85. Kumar P, Nagarajan A, Uchil PD. Analysis of Cell Viability by the Lactate Dehydrogenase Assay. Cold Spring Harbor Protocols. 2018;2018(6). https://doi.org/10.1101/pdb.prot095497
  86. Mi Y, Wei C, Sun L, Liu H, Zhang J, Luo J, Yu X, He J, Ge H, Liu P. Melatonin inhibits ferroptosis and delays age-related cataract by regulating SIRT6/p-Nrf2/GPX4 and SIRT6/NCOA4/FTH1 pathways. Biomedicine & Pharmacotherapy. 2023;157:114048. https://doi.org/10.1016/j.biopha.2022.114048
  87. Ma S, Henson ES, Chen Y, Gibson SB. Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death & Disease. 2016;7(7):e2307. https://doi.org/10.1038/cddis.2016.208
  88. Chen X, Kang R, Kroemer G, Tang D. Organelle-specific regulation of ferroptosis. Cell Death and Differentiation. 2021;28(10):2843-2856. https://doi.org/10.1038/s41418-021-00859-z
  89. Santana-Codina N, Mancias JD. The Role of NCOA4-Mediated Ferritinophagy in Health and Disease. Pharmaceuticals. 2018;11(4):114.  https://doi.org/10.3390/ph11040114
  90. Zhou H, Zhou YL, Mao JA, Tang LF, Xu J, Wang ZX, He Y, Li M. NCOA4-mediated ferritinophagy is involved in ionizing radiation-induced ferroptosis of intestinal epithelial cells. Redox Biology. 2022;55:102413. https://doi.org/10.1016/j.redox.2022.102413
  91. Chen J, Ou Z, Gao T, Yang Y, Shu A, Xu H, Chen Y, Lv Z. Ginkgolide B alleviates oxidative stress and ferroptosis by inhibiting GPX4 ubiquitination to improve diabetic nephropathy. Biomedicine & Pharmacotherapy. 2022;156:113953. https://doi.org/10.1016/j.biopha.2022.113953
  92. Feng H, Schorpp K, Jin J, Yozwiak CE, Hoffstrom BG, Decker AM, Rajbhandari P, Stokes ME, Bender HG, Csuka JM, Upadhyayula PS, Canoll P, Uchida K, Soni RK, Hadian K, Stockwell BR. Transferrin Receptor Is a Specific Ferroptosis Marker. Cell Reports. 2020;30(10):3411-3423. https://doi.org/10.1016/j.celrep.2020.02.049
  93. Ren T, Huang J, Sun W, Wang G, Wu Y, Jiang Z, Lv Y, Wu G, Cao J, Liu M, Gu H. Zoledronic acid induces ferroptosis by reducing ubiquinone and promoting HMOX1 expression in osteosarcoma cells. Frontiers in pharmacology. 2023;13:1071946. https://doi.org/10.3389/fphar.2022.1071946
  94. Xie Y, Wang B, Zhao Y, Tao Z, Wang Y, Chen G, Hu X. Mammary adipocytes protect triple-negative breast cancer cells from ferroptosis. Journal of Hematology & Oncology. 2022;15(1):72.  https://doi.org/10.1186/s13045-022-01297-1
  95. Feng Z, Qin Y, Huo F, Jian Z, Li X, Geng J, Li Y, Wu J. NMN recruits GSH to enhance GPX4-mediated ferroptosis defense in UV irradiation induced skin injury. Biochimica et Biophysica Acta. Molecular Basis of Disease. 2022;1868(1):166287. https://doi.org/10.1016/j.bbadis.2021.166287
  96. Shi L, Song Z, Li Y, Huang J, Zhao F, Luo Y, Wang J, Deng F, Shadekejiang H, Zhang M, Dong S, Wu X, Zhu J. MiR-20a-5p alleviates kidney ischemia/reperfusion injury by targeting ACSL4-dependent ferroptosis. American Journal of Transplantation. 2023; 23(1):11-25.  https://doi.org/10.1016/j.ajt.2022.09.003
  97. Feng H, Liu Q, Deng Z, Li H, Zhang H, Song J, Liu X, Liu J, Wen B, Wang T. Human umbilical cord mesenchymal stem cells ameliorate erectile dysfunction in rats with diabetes mellitus through the attenuation of ferroptosis. Stem Cell Research & Therapy. 2022;13(1):450.  https://doi.org/10.1186/s13287-022-03147-w
  98. Koppula P, Lei G, Zhang Y, Yan Y, Mao C, Kondiparthi L, Shi J, Liu X, Horbath A, Das M, Li W, Poyurovsky MV, Olszewski K, Gan B. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers. Nature Communications. 2022 Apr 22;13(1):2206. PMID: 35459868; PMCID: PMC9033817. https://doi.org/10.1038/s41467-022-29905-1
  99. Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F, Merl-Pham J, Bao X, Anastasov N, Kössl J, Brandner S, Daniels JD, Schmitt-Kopplin P, Hauck SM, Stockwell BR, Hadian K, Schick JA. GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Central Science. 2020;6(1):41-53.  https://doi.org/10.1021/acscentsci.9b01063

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.