The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Varfolomeeva A.A.

KereMentorAyAi LLC, Moscow, Russia

Kamyshanskaya I.G.

St. Petersburg State University, St. Petersburg, Russia

Blinov D.S.

All-Russian Research Center for Safety of Biologically Active Substances, Staraya Kupavna, Russia

Lobishcheva A.Yu.

St. Petersburg State University, St. Petersburg, Russia

Blinova E.V.

Federal State Budget Organization National Medical Research Center of Cardiology, Ministry of Healthcare Russian Federation, 3 ,Cherepkovskaya Str. 15a, 121552, Moscow, Russian Federation

Cheremisin V.M.

St. Petersburg State University, St. Petersburg, Russia

Dydykin S.S.

Rossiĭskiĭ nauchnyĭ tsentr khirurgii im. akad. B.V. Petrovskogo RAMN, Moskva

Possibilities of detecting longitudinal flatfoot using the X-ray method of research and intelligent computer vision system

Authors:

Varfolomeeva A.A., Kamyshanskaya I.G., Blinov D.S., Lobishcheva A.Yu., Blinova E.V., Cheremisin V.M., Dydykin S.S.

More about the authors

Read: 2415 times


To cite this article:

Varfolomeeva AA, Kamyshanskaya IG, Blinov DS, Lobishcheva AYu, Blinova EV, Cheremisin VM, Dydykin SS. Possibilities of detecting longitudinal flatfoot using the X-ray method of research and intelligent computer vision system. Russian Journal of Operative Surgery and Clinical Anatomy. 2020;4(2):27‑36. (In Russ.)
https://doi.org/10.17116/operhirurg2020402127

Recommended articles:
Arti­ficial inte­lligence in ultrasound diagnosis of thyroid nodu­les. Piro­gov Russian Journal of Surgery. 2024;(12-2):109-116
Comparison of models for prediction of spontaneous preterm birth. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):10-19
Is arti­ficial inte­lligence nece­ssary for healthcare system?. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):40-48
Challenges, problems and approaches to healthcare digi­tal technologies enha­ncement. Russian Journal of Preventive Medi­cine. 2024;(12):31-36
Arti­ficial inte­lligence-based software for digi­tal asse­ssment of repa­rative bone tissue rege­neration. Rege­nerative Biotechnologies, Preventive, Digi­tal and Predictive Medi­cine. 2025;(1):19-24

References:

  1. Deland JT. Adult-acquired flatfoot deformity. J Am Acad Orthop Surg. 2008;16:399-406.
  2. Dare DM, Dodwell ER. Pediatric flatfoot: cause, epidemiology, assessment, and treatment. Curr Opin Pediatr. 2014;26:93-100.
  3. Smyth NA, Aiyer AA, Kaplan JR. Adult-acquired flatfoot deformity. Eur J Orthop Surg Traum. 2017;27:433-439.
  4. Carr JB II, Yang S, Lather LA. Pediatric pes planus: a state-of-the-art review. Pediatrics. 2016;137:1-12.
  5. Ford SE, Scannell BP. Pediatric flatfoot: pearls and pitfalls. Foot Ankle Clin. 2017;22:643-656.
  6. Pavone V, Vescio A, DiSilvestri CA. Outcomes of the calcaneo-stop procedures for the treatment of juvenile flatfoot in young athletes. J Child Orthop. 2018;12:582-589.
  7. Chou PY, Chen YY, Liao CH. The influence of different imaging postures on flatfoot evaluation. Chin J Rad Tech. 2009;33:63-68.
  8. Kouchi M, Mochimaru M, Tsuzuki K. Interobserver errors in anthropometry. J Hum Ergol. 1999;28:15-24.
  9. Hamza AO, Ahmed HK, Khider MO. A new noninvasive flatfoot detector. J Clin Eng. 2015;40:57-63.
  10. Navarro LA, García DO, Villavicencio EA. Optoelectronic system for detection of flat foot by using estimation techniques: Study and approach of design. Annual. Intl. Conf. IEEE. Eng Med Biol Soc. 2010;10:5768-5771.
  11. Lee YC, Lin G, Wang MJJ. Comparing 3D foot scanning with conventional measurement methods. J Foot Ankle Res. 2014;7:44-48.
  12. Maestre-Rendon JR, Rivera-Roman TA, Sierra-Hernandez JM. Low computational-cost footprint deformities diagnosis sensor through angles, dimensions analysis and image processing techniques. Sensors. 2017;17:2700-2712.
  13. Dumoulin V, Visin F. A guide to convolution arithmetic for deep learning. Arxiv Lib. 2018;10:1-31.
  14. Jian MS, Shen JH, Chen YC. Cloud image processing and analysis based flatfoot classification method. Int J Comput. 2014;8:90-98.
  15. Badrinarayanan V, Kendall A, Cipolla R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE T Pattern Anal. 2017;39:2481-2495.
  16. He K, Zhang X, Ren S. Deep Residual Learning for Image Recognition. IEEE Comput Vis Pattern Recognit. 2016;10:1-4.
  17. Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation. Arxiv Lib. 2015;15:1-8.
  18. https://www.image-net.org/index
  19. Kaiming He, Xiangyu Zhang, Shaoqing Ren. Deep Residual Learning for Image Recognition. Arxiv Lib. 2015;15:1-12.
  20. https://arxiv.org/abs/1412.6980.

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.