Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Аникин А.А.

ФБГУ «Национальный исследовательский центр “Курчатовский институт”»;
Национальный исследовательский университет “Высшая школа экономики”

Ильина Е.Г.

ФБГУ «Национальный исследовательский центр “Курчатовский институт”»;
ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России, (Сеченовский Университет)

Лобанова М.А.

ФБГУ «Национальный исследовательский центр “Курчатовский институт”»;
Факультет фундаментальной медицины МНОИ МГУ им. М.В. Ломоносова

Комарова И.А.

Медицинская высшая школа (институт), Российский государственный социальный университет

Балаж И.А.

ФБГУ «Национальный исследовательский центр “Курчатовский институт”»;
ФГБУ «ФНКЦ ФХМ им. Ю.М. Лопухина» ФМБА России

Современные подходы к дактилоскопии микробиома

Авторы:

Аникин А.А., Ильина Е.Г., Лобанова М.А., Комарова И.А., Балаж И.А.

Подробнее об авторах

Прочитано: 167 раз


Как цитировать:

Аникин А.А., Ильина Е.Г., Лобанова М.А., Комарова И.А., Балаж И.А. Современные подходы к дактилоскопии микробиома. Молекулярная генетика, микробиология и вирусология. 2025;43(4‑2):33‑41.
Anikin AA, Ilyina EG, Lobanova MA, Komarova IA, Balazs IA. Modern approaches to microbiome fingerprinting. Molecular Genetics, Microbiology and Virology. 2025;43(4‑2):33‑41. (In Russ.)
https://doi.org/10.17116/molgen20254304233

Рекомендуем статьи по данной теме:
Фак­то­ры под­дер­жа­ния хро­ни­чес­ко­го вос­па­ле­ния при пси­хи­чес­ких за­бо­ле­ва­ни­ях. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2025;(8):7-15
Роль TRP-ка­на­лов в раз­ви­тии и те­че­нии миг­ре­ни. Рос­сий­ский жур­нал бо­ли. 2025;(3):93-103
Ось «мозг—ки­шеч­ник—мик­ро­би­ом» при бо­лез­ни Пар­кин­со­на. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. Спец­вы­пус­ки. 2025;(11-2):18-23

Литература / References:

  1. Singh AP. Genomic Techniques Used to Investigate the Human Gut Microbiota. IntechOpen eBooks. Published online June 16, 2021. https://doi.org/10.5772/intechopen.91808
  2. Amy Arabella Singh, Okpeku M. EMERGING METHODS OF HUMAN MICROBIOME ANALYSIS AND ITS FORENSIC APPLICATIONS: Reviews. Forensic science international Reports. 2024;9:100355-100355. https://doi.org/10.1016/j.fsir.2024.100355
  3. Sharma P, Bano A, Singh SP, Dubey NK, Chandra R, Iqbal HMN. Microbial fingerprinting techniques and their role in the remediation of environmental pollution. Cleaner Chemical Engineering. 2022;2:100026. https://doi.org/10.1016/j.clce.2022.100026
  4. Hou K, Wu ZX, Chen XY, et al. Microbiota in Health and Diseases. Signal Transduction and Targeted Therapy. 2022;7(135). https://doi.org/10.1038/s41392-022-00974-4
  5. Stadlbauer V, Engertsberger L, Komarova I, et al. Dysbiosis, gut barrier dysfunction and inflammation in dementia: a pilot study. BMC Geriatrics. 2020;20(1). https://doi.org/10.1186/s12877-020-01644-2
  6. Maini Rekdal V, Bess EN, Bisanz JE, Turnbaugh PJ, Balskus EP. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science. 2019;364(6445):eaau6323. https://doi.org/10.1126/science.aau6323
  7. Horvath A, Rainer F, Bashir M, et al. Biomarkers for oralization during long-term proton pump inhibitor therapy predict survival in cirrhosis. Scientific Reports. 2019;9(1). https://doi.org/10.1038/s41598-019-48352-5
  8. Vich Vila A, Collij V, Sanna S, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nature Communications. 2020;11(1):362.  https://doi.org/10.1038/s41467-019-14177-z
  9. Synthetic gut microbiome: Advances and challenges. Computational and Structural Biotechnology Journal. 2021;19:363-371.  https://doi.org/10.1016/j.csbj.2020.12.029
  10. Pandey P, Chowdhury D, Wang Y. Denaturing Gradient Gel Electrophoresis Approach for Microbial Shift Analysis in Thermophilic and Mesophilic Anaerobic Digestions. Gels. 2024;10(5):339-339.  https://doi.org/10.3390/gels10050339
  11. Bayle S, Martinez-Arribas B, Jarraud S, et al. Development of a DGGE method to explore Legionella communities. Heliyon. 2020;6(1). https://doi.org/10.1016/j.heliyon.2019.e03149
  12. Viglasky V. Polyacrylamide temperature gradient gel electrophoresis. Methods in Molecular Biology (Clifton, NJ). 2013;1054:159-171.  https://doi.org/10.1007/978-1-62703-565-1_10
  13. Mohammadi P, Hamidkhani A, Asgarani E. Comparative Analysis of Denaturing Gradient Gel Electrophoresis and Temporal Temperature Gradient Gel Electrophoresis Profiles as a Tool for the Differentiation of Candida Species. Jundishapur Journal of Microbiology. 2015;8(10): e22249. https://doi.org/10.5812/jjm.22249
  14. Rafaela V, Keller R, Carolina A, Rodrigues J. Temperature Gradient Gel Electrophoresis as a Valuable Accessory Tool for Assessment of Dysbiosis in Crohn’s Disease. Advances in Microbiology. 2016;06(08):549-554.  https://doi.org/10.4236/aim.2016.68055
  15. Fan L, Zhu S, Liu D, Ni J. Decolorization of 1-amino-4-bromoanthraquinone-2-sulfonic acid by a newly isolated strain of Sphingomonas herbicidovorans. International Biodeterioration & Biodegradation. 2009;63(1):88-92.  https://doi.org/10.1016/j.ibiod.2008.07.004
  16. Gryta A, Frąc M. Methodological Aspects of Multiplex Terminal Restriction Fragment Length Polymorphism-Technique to Describe the Genetic Diversity of Soil Bacteria, Archaea and Fungi. Sensors. 2020;20(11):3292. https://doi.org/10.3390/s20113292
  17. Connon SA, Adisorn Tovanabootr, Dolan ME, Vergin KL, Giovannoni SJ, Semprini L. Bacterial community composition determined by culture-independent and -dependent methods during propane-stimulated bioremediation in trichloroethene-contaminated groundwater. 2005;7(2):165-178.  https://doi.org/10.1111/j.1462-2920.2004.00680.x
  18. Kiesel B, Balcke GU, Dietrich J, Vogt C, Geyer R. Microbial community shifts as a response to efficient degradation of chlorobenzene under hypoxic conditions. Biodegradation. 2008;19(3):435-446.  https://doi.org/10.1007/s10532-007-9149-z
  19. Koch C, Günther S, Desta AF, Hübschmann T, Müller S. Cytometric fingerprinting for analyzing microbial intracommunity structure variation and identifying subcommunity function. Nature Protocols. 2013;8(1):190-202.  https://doi.org/10.1038/nprot.2012.149
  20. Zimmermann J, Hübschmann T, Schattenberg F, et al. High‐resolution microbiota flow cytometry reveals dynamic colitis‐associated changes in fecal bacterial composition. European Journal of Immunology. 2016;46(5):1300-1303. https://doi.org/10.1002/eji.201646297
  21. Koch C, Müller S. Personalized microbiome dynamics — Cytometric fingerprints for routine diagnostics. Molecular Aspects of Medicine. 2018;59:123-134.  https://doi.org/10.1016/j.mam.2017.06.005
  22. Susanna van Gelder, Röhrig N, Florian Schattenberg, et al. A cytometric approach to follow variation and dynamics of the salivary microbiota. Methods. 2017;134-135:67-79.  https://doi.org/10.1016/j.ymeth.2017.08.009
  23. Kupschus J, Janssen S, Hoek A, et al. Rapid detection and online analysis of microbial changes through flow cytometry. Cytometry Part A: The Journal of the International Society for Analytical Cytology. 2023;103(5):419-428.  https://doi.org/10.1002/cyto.a.24704
  24. Wang Y, Wei J, Zhang W, et al. Gut dysbiosis in rheumatic diseases: A systematic review and meta-analysis of 92 observational studies. eBioMedicine. 2022;80.  https://doi.org/10.1016/j.ebiom.2022.104055
  25. Schmiester M, Maier R, Riedel R, et al. Flow cytometry can reliably capture gut microbial composition in healthy adults as well as dysbiosis dynamics in patients with aggressive B-cell non-Hodgkin lymphoma. Gut microbes. 2022;14(1):2081475. https://doi.org/10.1080/19490976.2022.2081475
  26. Erali M, Voelkerding KV, Wittwer CT. High resolution melting applications for clinical laboratory medicine. Experimental and Molecular Pathology. 2008;85(1):50-58.  https://doi.org/10.1016/j.yexmp.2008.03.012
  27. Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J, Wittwer CT. Amplicon Melting Analysis with Labeled Primers: A Closed-Tube Method for Differentiating Homozygotes and Heterozygotes. Clinical Chemistry. 2003;49(3):396-406.  https://doi.org/10.1373/49.3.396
  28. Tong SYC, Giffard PM. Microbiological Applications of High-Resolution Melting Analysis. Journal of Clinical Microbiology. 2012;50(11):3418-3421. https://doi.org/10.1128/jcm.01709-12
  29. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clinical Chemistry. 2003;49(6 Pt 1):853-860.  https://doi.org/10.1373/49.6.853
  30. Borkowska M, Michał Kułakowski, Myszka K. High-Resolution Melting Analysis Potential for Saccharomyces cerevisiae var. boulardii Authentication in Probiotic-Enriched Food Matrices. BioTech. 2024;13(4):48-48.  https://doi.org/10.3390/biotech13040048
  31. Parlapani FF, Syropoulou F, Tsiartsafis A, et al. HRM analysis as a tool to facilitate identification of bacteria from mussels during storage at 4°C. Food Microbiology. 2020;85:103304. https://doi.org/10.1016/j.fm.2019.103304
  32. Syropoulou F, Parlapani FF, Bosmali I, Madesis P, Boziaris IS. HRM and 16S rRNA gene sequencing reveal the cultivable microbiota of the European sea bass during ice storage. International journal of food microbiology. 2020;327:108658. https://doi.org/10.1016/j.ijfoodmicro.2020.108658
  33. Anisimova EA, Mirgazov DA, Dodonova EA, Elizarova IA, Pankova EV, Osyanin KA. Use of HRM-Analysis of the Melting Curves Obtained after Amplification of VNTR-Loci for Identification and Differentiation of Brucella Strains. Problems of Particularly Dangerous Infections. 2024;(4):42-49.  https://doi.org/10.21055/0370-1069-2023-4-42-49
  34. Ania Ahani Azari, Reza Amanollahi, Razi Jafari Jozani, Trott DJ, Farhid Hemmatzadeh. High-resolution melting curve analysis: a novel method for identification of Mycoplasma species isolated from clinical cases of bovine and porcine respiratory disease. Tropical Animal Health and Production. 2019;52(3):1043-1047. https://doi.org/10.1007/s11250-019-02098-4
  35. Miller M, Zorn J, Brielmeier M. High-Resolution Melting Curve Analysis for Identification of Pasteurellaceae Species in Experimental Animal Facilities. Tseng CP, ed. PLOS ONE. 2015;10(11):e0142560. https://doi.org/10.1371/journal.pone.0142560
  36. Sanaz Dehbashi, Hamed Tahmasebi, Alikhani MY, Fariba Keramat, Arabestani MR. Optimization and development of high-resolution melting curve analysis (HRMA) assay for detection of New Delhi metallo-β-lactamase (NDM) producing Pseudomonas aeruginosa. AIMS Microbiology. 2022;8(2):178-192.  https://doi.org/10.3934/microbiol.2022015
  37. Kuang Z, Huang H, Chen L, et al. Development of a High-Resolution Melting Method for the Detection of Clarithromycin-Resistant Helicobacter pylori in the Gastric Microbiome. Antibiotics. 2024;13(10):975-975.  https://doi.org/10.3390/antibiotics13100975
  38. Aralar A, Goshia T, Ramchandar N, et al. Universal Digital High-Resolution Melt Analysis for the Diagnosis of Bacteremia. The Journal of molecular diagnostics : JMD. 2024;26(5):349-363.  https://doi.org/10.1016/j.jmoldx.2024.01.013
  39. Hossein Kafi, Emaneini M, Halimi S, Hossein Ali Rahdar, Fereshteh Jabalameli, Reza Beigverdi. Multiplex high-resolution melting assay for simultaneous detection of five key bacterial pathogens in urinary tract infections: A pilot study. Frontiers in Microbiology. 2022;13.  https://doi.org/10.3389/fmicb.2022.1049178
  40. Khosravi AD, Hossein Meghdadi, Hashemzadeh M, Alami A, Tabandeh MR. Application of a new designed high resolution melting analysis for mycobacterial species identification. BMC Microbiology. 2024;24(1). https://doi.org/10.1186/s12866-024-03361-x
  41. Boussina A, Lennart Langouche, Obirieze AC, et al. Machine learning based DNA melt curve profiling enables automated novel genotype detection. BMC Bioinformatics. 2024;25(1). https://doi.org/10.1186/s12859-024-05747-0
  42. Вихрова С.Ю., Лобанова М.А., Демкин В.В., Казаков А.А., Балаж И.А. Профилирование микробиома кишечника человека на основе высокоразрешающего анализа кривых плавления продуктов амплификации участка гена 16S рРНК. Биотехнология. 2025;41(4):51-54.  https://doi.org/10.56304/S0234275825040155

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.