The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Goldina T.A.

Sanofi Russia

Burmistrov V.A.

AO Sanofi Russia

Efimenko I.V.

Semantic Hub LLC

Khoroshevskiy V.F.

Federal Research Center «Computer Science and Management»

Artificial Intelligence in Healthcare: Real World Data and Patient Voice — Are We Ready for New Realities?

Authors:

Goldina T.A., Burmistrov V.A., Efimenko I.V., Khoroshevskiy V.F.

More about the authors

Read: 3600 times


To cite this article:

Goldina TA, Burmistrov VA, Efimenko IV, Khoroshevskiy VF. Artificial Intelligence in Healthcare: Real World Data and Patient Voice — Are We Ready for New Realities? Medical Technologies. Assessment and Choice. 2021;43(2):22‑31. (In Russ.)
https://doi.org/10.17116/medtech20214302122

Recommended articles:
Comparison of models for prediction of spontaneous preterm birth. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):10-19
Is arti­ficial inte­lligence nece­ssary for healthcare system?. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):40-48
Arti­ficial inte­lligence in ultrasound diagnosis of thyroid nodu­les. Piro­gov Russian Journal of Surgery. 2024;(12-2):109-116
Challenges, problems and approaches to healthcare digi­tal technologies enha­ncement. Russian Journal of Preventive Medi­cine. 2024;(12):31-36
Arti­ficial inte­lligence-based software for digi­tal asse­ssment of repa­rative bone tissue rege­neration. Rege­nerative Biotechnologies, Preventive, Digi­tal and Predictive Medi­cine. 2025;(1):19-24

References:

  1. Goldina TA, Suvorov NI. Real-World Data Studies: from Data to Health Technology Assessment and Decision-Making in Healthcare. Medicinskie tekhnologii. Ocenka i vybor. 2018;31(1):21-29. (In Russ.).
  2. Dinov ID. Volume and value of big healthcare data. Journal of Medical Statistics and Informatics. 2016;4:3.  https://doi.org/10.7243/2053-7662-4-3
  3. Gopal G, Suter-Crazzolara C, Toldo L, Eberhardt W. Digital transformation in healthcare — architectures of present and future information technologies. Clinical Chemistry and Laboratory Medicine. 2019;57(3):328-335.  https://doi.org/10.1515/cclm-2018-0658
  4. Этика и «цифра»: Этические проблемы цифровых технологий. Аналитический доклад. М.: РАНХиГС; 2020. Ссылка активна на 01.04.21. 
  5. Etika i «cifra»: Eticheskie problemy cifrovyh tekhnologij. Analiticheskij doklad. M.: RANHiGS; 2020. Accessed April 1, 2021. (In Russ.). https://ethics.cdto.center/1_1
  6. Batsina EA, Popsuyko AN, Artamonova GV. Digitalization of healthcare in the Russian Federation: myth or reality? Vrach i informacionnye tekhnologii. 2020;3:73-80. (In Russ.). https://doi.org/10.37690/1811-0193-2020-3-73-80
  7. Karpov OE, Subbotin SA, Shishkanov DV, Zamyatin MN. Digital public health. Necessity and background. Vrach i informacionnye tekhnologii. 2017;3:6-22. (In Russ.).
  8. Kurakova NG, Tsvetkova LA, Cherchenko OV. Artificial intelligence technologies in medicine and healthcare: Russia’s positionon the global patent and publication landscape. Vrach i informacionnye tekhnologii. 2020;2:81-100. (In Russ.). https://doi.org/10.37690/1811-0193-2020-2-81-100
  9. Solodovnikov AG, Sorokina EYu, Goldina TA. Real-world data: from planning to analysis. Medicinskie tekhnologii. Ocenka i vybor. 2020;3:9-16. (In Russ.). https://doi.org/10.17116/medtech2020410316
  10. Hype Cycle for Artificial Intelligence, 2020. Accessed March 5, 2020. https://www.gartner.com/en/documents/3988006/hype-cycle-for-artificial-intelligence-2020
  11. Rebrova OYu. Life cycle of decision support systems as medical technologies. Vrach i informacionnye tekhnologii. 2020;1:27-37. (In Russ.). https://doi.org/10.37690/1811-0193-2020-1-27-37
  12. Clinical Decision Support Software. Draft Guidance for Industry and Food and Drug Administration Staff. September 2019. Accessed March 4, 2021. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-decision-support-software
  13. Iskusstvennyj intellekt ot rezidenta «Skolkovo» vpervye priznali dicinskim izdeliem. 22 aprelya 2020. Accessed February 02, 2021. (In Russ.). https://sk.ru/news/iskusstvennyy-intellekt-ot-rezidenta-skolkovo-vpervye-priznali-medicinskim-izdeliem/
  14. Issledovaniya real’noj klinicheskoj praktiki. Pod red. Kolbina AS. M.: Izdatel’stvo OKI: Buki Vedi; 2020. Accessed April 01, 2020. (In Russ.). https://clck.ru/QkeeP
  15. van Stekelenborg J, Ellenius J, Maskell S, Bergvall T, Caster O, Dasgupta N, et al. Recommendations for the Use of Social Media in Pharmacovigilance. Lessons from IMI WEB-RADR. Drug Safety. 2019;42(12):1393-1407. https://doi.org/10.1007/s40264-019-00858-7
  16. Basile AO, Yahi A, Tatonetti NP. Artificial Intelligence for Drug Toxicity and Safety. Trends in Pharmacological Sciences. 2019;40(9):624-635.  https://doi.org/10.1016/j.tips.2019.07.005
  17. MELLODDY Homepage, Project 831472, European Union-2019. Accessed April 09, 2021. https://www.melloddy.eu/objectives
  18. Khoroshevsky VF, Efimenko VF, Efimenko IV. Artificial Intelligence, Biotechnology and Medicine: Reality, Myths and Trends. In: Kuznetsov SO, Panov AI, Yakovlev KS, eds. Artificial Intelligence. 18th Russian Conference, RCAI 2020, Moscow, Russia, October 10—16, 2020, Proceedings. RCAI 2020. Lecture Notes in Computer Science: 12412. Springer, Cham; 2020. https://doi.org/10.1007/978-3-030-59535-7_31
  19. Samsonov MYu, Pogrebnoy NO, Volskaya EA. New technologies in the field of real-world data analysis ( RWD): issues and prospects. Remedium. Zhurnal o rossijskom rynke lekarstv i medicinskoj tekhniki. 2020;1-3:3-9. (In Russ.). https://doi.org/10.21518/1561-5936-2020-1-2-3-3-9
  20. Habl C, Renner A-T, Bobek J, Laschkolnig A. Study on Big Data in Public Health, Telemedicine and Healthcare, Final Report. December 2016. Accessed April 01, 2021. https://ec.europa.eu/health/sites/health/files/ehealth/docs/bigdata_report_en.pdf
  21. Efimenko IV, Khoroshevsky VF. Identification of Promising High-Tech Solutions in Big Text Data with Semantic Technologies: Energy, Pharma, and Others Industries. In: Innovation Discovery. 2018;431-469.  https://doi.org/10.1142/9781786344069_0016
  22. King TC, Aggarwal N, Taddeo M, Floridi L. Artificial Intelligence Crime: An Interdisciplinary Analysis of Foreseeable Threats and Solutions. Science and Engineering Ethics. 2020;26(1):89-120.  https://doi.org/10.1007/s11948-018-00081-0
  23. Rapport F, Braithwaite J. Are we on the cusp of a fourth research paradigm? Predicting the future for a new approach to methods-use in medical and health services research. BMC Medical Research Methodology. 2018;18(1):131.  https://doi.org/10.1186/s12874-018-0597-4
  24. Belevskiy A, Bulatov V, Samosudova L. Clinical characteristics and approaches to COPD management in Russia assessed by social media listening (SML) with natural language processing (NLP). International Journal of Nursing Practice. 2020;10(4):50. 
  25. Morozov SP, Vladimirsky AV, Ledakova NV, Andreichenko AE, Arzamasov KM, Balanyuk EA, et al. Moscow experiment on the use of computer vision in radiation diagnostics: involvement of radiologists. Vrach i informacionnye tekhnologii. 2020;4:14-23. (In Russ.). https://doi.org/10.37690/1811-0193-2020-4-14-23
  26. Oehrlein EM, Graff JS, Harris J, Perfetto EM. Patient-Community Perspectives on Real-World Evidence: Enhancing Engagement, Understanding, and Trust. Patient. 2019;12(4):375-381.  https://doi.org/10.1007/s40271-019-00356-z

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.