The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Nikolskiy V.I.

Penza State University

Sergatskiy K.I.

Penza State University

Sheremet D.P.

Penza State University

Shabrov A.V.

Penza State University

Scaffold technologies in regenerative medicine: history of the issue, current state and prospects of application

Authors:

Nikolskiy V.I., Sergatskiy K.I., Sheremet D.P., Shabrov A.V.

More about the authors

Journal: Pirogov Russian Journal of Surgery. 2022;(11): 36‑41

Read: 7562 times


To cite this article:

Nikolskiy VI, Sergatskiy KI, Sheremet DP, Shabrov AV. Scaffold technologies in regenerative medicine: history of the issue, current state and prospects of application. Pirogov Russian Journal of Surgery. 2022;(11):36‑41. (In Russ.)
https://doi.org/10.17116/hirurgia202211136

Recommended articles:
Rege­nerative capa­bilities of platelet-rich plasma in different age groups. Piro­gov Russian Journal of Surgery. 2025;(5):36-43
Treatment of knee osteoarthritis with auto­logous stro­mal-vascular fraction of adipose tissue. Rege­nerative Biotechnologies, Preventive, Digi­tal and Predictive Medi­cine. 2024;(4):27-37
Standardized and scalable method for stro­mal-vascular fraction harvesting from adipose tissue. Rege­nerative Biotechnologies, Preventive, Digi­tal and Predictive Medi­cine. 2024;(4):76-81
Portopulmonary hype­rtension. Journal of Respiratory Medi­cine. 2025;(2):39-44
The type 1 diabetes mellitus treatment. Russian Journal of Preventive Medi­cine. 2025;(8):131-137

References:

  1. https://cardioplant.ru/regenerative/ecm.
  2. Kumar V. Osnovy patologii zabolevanij po Robbinsu i Kotranu. Pod red. Kogan E.A. V 3 t. T. 1: glavy 1—10. M.: Logosfera; 2014. (In Russ.).
  3. Sergackij KI, Nikol’skij VI, Mitroshin AN, Ivachjov AS, Kachkurkina JuI, Sheremet DP. Fournier’s gangrene: a surgeon’s view of the current state of the problem (literature review). Izvestija vysshih uchebnyh zavedenij. Povolzhskij region. Medicinskie nauki. 2021;3:43-57. (In Russ.). https://doi.org/10.21685/2072-3032-2021-3-5
  4. Kim HS, Lee DY. Smart engineering of gold nanoparticles to improve intestinal barrier penetration. Journal of Industrial and Engineering Chemistry. 2021;102:122-134.  https://doi.org/10.1016/j.jiec.2021.06.032
  5. Shin HK, Lee S, Oh H, Yoo D, Park S, Kim W, Kang M. Development of blood brain barrier permeation prediction models for organic and inorganic biocidal active substances. Chemosphere. 2021;277:130330. https://doi.org/10.1016/j.chemosphere.2021.130330
  6. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, Bannerjee SK. Drug delivery systems: An updated review. Int J Pharm Investig. 2012;2(1):2-11.  https://doi.org/10.4103/2230-973X.96920
  7. Zagoskina NV, Nazarenko LV, Kalashnikova EA, Zhivuhina EA. Biotechnology: theory and practice. Uchebnoe posobie dlja vuzov. M.: Oniks; 2009. (In Russ.).
  8. Khang G, Lee SJ, Kim MS, Lee HB. Biomaterials: tissue engineering and scaffold in Webster J (ed.). Encyclopedia of Medical Devices and Instrumentation, 2nd ed., Wiley Press, New York; 2006;366-383.  https://doi.org/10.1002/0471732877.emd029
  9. Khang G, Kim MS, Lee HB. A Manual for biomaterials/scaffold fabrication technology. British Library Cataloguing-in-Publication Data. 2007;288.  https://doi.org/10.1142/6408
  10. Wang X, Nyman JS, Dong X, Leng H, Reyes M. Fundamental Biomechanics in Bone Tissue Engineering. Synthesis Lectures on Tissue Engineering. 2010;2(1):1-225.  https://doi.org/10.2200/S00246ED1V01Y200912TIS004
  11. Dorj B, Won JE, Kim JH, Choi SJ, Shin US, Kim HW. Robocasting nanocomposite scaffolds of poly (caprolactone)/ hydroxyapatite incorporating modified carbon nanotubes for hard tissue reconstruction. J Biomed Mater Res A. 2013;101(6):1670-1681. https://doi.org/10.1002/jbm.a.34470
  12. Egorihina MN, Levin GJa, Alejnik DJa, Charykova IN, Rubcova JuP, Sosnina LN, Davydenko DV. Scaffold for replacement of skin defects based on natural biopolymers. Uspehi sovremennoj biologii. 2018;138(3):273-282. (In Russ.). https://doi.org/10.7868/S0042132418030055
  13. Ivanov AN, Chibrikova JuA, Norkin IA. Influence of biocompatibility of polycaprolactone and vaterite scaffolds on the dynamics of bone tissue remodeling markers. Vestnik novyh medicinskih tehnologij. 2020;27(4):55-59. (In Russ.). https://doi.org/10.24411/1609-2163-2020-16723
  14. Seeger MA, Paller AS. The roles of growth factors in keratinocyte migration. Adv Wound Care. 2015;4(4):213-224.  https://doi.org/10.1089/wound.2014.0540
  15. Sadovoj MA, Larionov PM, Samohin AG, Rozhnova OM. Cellular matrices (scaffolds) for bone regeneration: the current state of the problem. Hirurgija pozvonochnika. 2014;2:79-86. (In Russ.). https://doi.org/10.24411/1609-2163-2020-16723
  16. Norkin IA, Ivanov AN, Kurtukova MO, Savel’eva MS, Martjukova AV, Gorin DA, Parahonskij BV. Features of microcirculatory reactions during subcutaneous implantation of polycaprolactone matrices mineralized with vaterite. Saratovskij nauchno-medicinskij zhurnal. 2018;14(1):35-41. Accessed February 27, 2022. (In Russ.). https://cyberleninka.ru/article/n/osobennosti-mikrotsirkulyatornyh-reaktsiy-pri-subkutannoy-implantatsii-polikaprolaktonovyh-matrits-mineralizovannyh-vateritom
  17. Frederix M, Edwards A, Swiderska A, Stanger A, Karunakaran R, Williams A, Abbruscato P, Sanchez-Contreras M, Poole PS, Downie JA. Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins. MolMicrobiol. 2014;93(3):464-478.  https://doi.org/10.1111/mmi.12670
  18. Gorelova AA, Murav’ev AN, Vinogradova TI, Gorelov AI, Judinceva NM, Nashhekina JuA, Samusenko IA, Jablonskij PK. Replacement urethroplasty with tissue-engineered constructs in the experiment. Urologicheskie vedomosti. 2020;10(3):201-208. (In Russ.). https://doi.org/10.17816/uroved46031
  19. Sokol AA, Grekov DA, Yemets GI, Shchotkina NV, Dovghaliuk AA, Rudenko NM, Yemets IM. Prospects for application of bovine pericardial scaffold for cardial surgery. Biotechnol. acta. 2020;13(6):41-49.  https://doi.org/10.15407/biotech13.06.041
  20. Roger VL, Go AS, Lloyd-Jones DM, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Makuc DM, Marcus GM, Marelli A, Matchar DB, Moy CS, Mozaffarian D, Mussolino ME, Nichol G, Paynter NP, Soliman EZ, Sorlie PD, Sotoodehnia N, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation. 2012;125(1):2-220.  https://doi.org/10.1161/CIR.0b013e31823ac046
  21. Kovacic JC, Harvey RP, Dimmeler S. Cardiovascular regenerative medicine: digging in for the long haul. Cell Stem Cell. 2007;1(6):628-633.  https://doi.org/10.1016/j.stem.2007.11.011
  22. Sánchez LA, Guerrero-Beltrán CE, Cordero-Reyes AM, García-Rivas G, Torre-Amione G. Use of stem cells in heart failure treatment: where we stand and where we are going. Methodist Debakey Cardiovasc J. 2013;9(4):195-200.  https://doi.org/10.14797/mdcj-9-4-195
  23. Cheng Y, Jiang S, Hu R, Lv L. Potential mechanism for endothelial progenitor cell therapy in acute myocardial infarction: activation of VEGF- PI3K/Akte-NOS pathway. Ann Clin Lab Sci. 2013;43(4):395-401. Accessed February 27, 2022. https://pubmed.ncbi.nlm.nih.gov/24247795
  24. Xu JY, Lee YK, Wang Y, Tse HF. Therapeutic application of endothelial progenitor cells for treatment of cardiovascular diseases. Curr Stem Cell Res Ther. 2014;9(5):401-414.  https://doi.org/10.2174/1574888x09666140619121318
  25. Ţintoiu IC, Ursulescu A, Elefteriades JA, Underwood MJ, Droc I, eds. Chapter 48 — Complex Reoperative Thoracic Aortic Surgery: Tactics and Techniques. New Approaches to Aortic Diseases from Valve to Abdominal Bifurcation, Academic Press. 2018;515-528.  https://doi.org/10.1016/B978-0-12-809979-7.00048-1
  26. Gupta NK, Armstrong EJ, Parikh SA. The current state of stem cell therapy for peripheral artery disease. CurrCardiol Rep. 2014;16(2):447.  https://doi.org/10.1007/s11886-013-0447-2
  27. Stone GW, Abizaid A, Onuma Y, Seth A, Gao R, Ormiston J, Kimura T, Chevalier B, Ben-Yehuda O, Dressler O, McAndrew T, Ellis SG, Kereiakes DJ, Serruys PW. Effect of Technique on Outcomes Following Bioresorbable Vascular Scaffold Implantation: Analysis From the ABSORB Trials. J Am CollCardiol. 2017;70(23):2863-2874. https://doi.org/10.1016/j.jacc.2017.09.1106
  28. Fidalgo C, Iop L, Sciro M, Harder M, Mavrilas D, Korossis S, Bagno A, Palù G, Aguiari P, Gerosa G. A sterilization method for decellularized xenogeneic cardiovascular scaffolds. ActaBiomater. 2018;67:282-294.  https://doi.org/10.1016/j.actbio.2017.11.035
  29. Ozaki Y, Garcia-Garcia HM, Melaku GD, Joner M, Galli S, Verheye S, Lee MKY, Waksman R, Haude M. Effect of Procedural Technique on Cardiovascular Outcomes Following Second-Generation Drug-Eluting Resorbable Magnesium Scaffold Implantation. CardiovascRevasc Med. 2021;29:1-6.  https://doi.org/10.1016/j.carrev.2021.05.006
  30. Van Hove AH, Burke K, Antonienko E, Brown 3rd E, Benoit DS. Enzymatically-responsive pro-angiogenic peptide-releasing poly (ethylene glycol) hydrogels promote vascularization in vivo. J Control Release. 2015;217:191-201.  https://doi.org/10.1016/j.jconrel.2015.09.005
  31. Eelen G, Zeeuw Pde, Simons M, Carmeliet P. Endothelial cell metabolism in normal and diseased vasculature. Circ Res. 2015;116(7):1231-1244. https://doi.org/10.1161/CIRCRESAHA.116.302855
  32. Pei Y, Zhang L, Mao X, Liu Z, Cui W, Sun X, Zhang Y. Biomaterial Scaffolds for Improving Vascularization During Skin Flap Regeneration. Chinese Journal of Plastic and Reconstructive Surgery. 2020;2(2):109-119.  https://doi.org/10.1016/S2096-6911(21)00021-2
  33. Böttcher-Haberzeth S, Biedermann T, Reichmann E. Tissue engineering of skin. Burns. 2010;36(4):450-460.  https://doi.org/10.1016/j.burns.2009.08.016
  34. Spang MT, Christman KL. Extracellular matrix hydrogel therapies: In vivo applications and development. Acta Biomater. 2018;68(1):1-14.  https://doi.org/10.1016/j.actbio.2017.12.019
  35. Wang X, You C, Hu X, Zheng Y, Li Q, Feng Z, Sun H, Gao C, Han C. The roles of knitted mesh-reinforced collagen-chitosan hybrid scaffold in the one-step repair of full-thickness skin defects in rats. ActaBiomater. 2013;9(8):7822-7832. https://doi.org/10.1016/j.actbio.2013.04.017
  36. Sangkert S, Kamolmatyakul S, Gelinsky M, Meesane J. 3D printed scaffolds of alginate/polyvinylalcohol with silk fibroin based on mimicked extracellular matrix for bone tissue engineering in maxillofacial surgery. Materials Today Communications. 2021;26:102-140.  https://doi.org/10.1016/j.mtcomm.2021.102140
  37. Jitphuthi P, Tangtrakulwanich B, Meesane J. Hierarchical porous formation, collagen and mineralized collagen modification of polylactic acid to design mimicked scaffolds for maxillofacial bone surgery. Materials Today Communications. 2017;13:46-52.  https://doi.org/10.1016/j.mtcomm.2017.08.006
  38. Gualtieri T, Ferrari M, Taboni S, Chan H, Townson J, Mattavell D, Sahovaler A, Eu D, Dey K, Mathews S, Re F, Bernardi S, Borsani E, Viswanathan S, Nicolai P, Sartore L, Russo D, Gilbert R, Irish J. 3D-mapping of mesenchymal stem cells growth on bioengineered scaffolds for maxillofacial skeleton regeneration: a preclinical, in vitro study. Cytotherapy. 2021;23(5):145-146.  https://doi.org/10.1016/S146532492100517X
  39. Wang Z, Wang Y, Yan J, Zhang K, Lin F, Xiang L, Deng L, Guan Z, Cui W, Zhang H. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev. 2021;174:504-534.  https://doi.org/10.1016/j.addr.2021.05.007
  40. Patent of the Russian Federation for the invention No. 2353397/27.04.09. Bull. №. 12. Safojan AA, Nesterenko SV, Nesterenko VG, Alekseeva NJu. Bioresorbable collagen matrix, method for its preparation and application. Accessed February 27, 2022. (In Russ.). https://findpatent.ru/patent/235/2353397.html
  41. Stupin VA, Silina EV, Gorskij VA, Gorjunov SV, Zhidkih SJu, Komarov AN, Sivkov AS, Gabitov RB, Zolotareva LS, Sinel’nikova TG, Barancevich ER, Bogomolov MS, Korejba KA, Bogdanov EA, Krivihin VT, Bakunov MJu, Eliseeva ME, Krivihin DV. Efficacy and safety of topical application of collagen biomaterial in the complex treatment of diabetic foot syndrome (results of a multicenter randomized clinical trial). Hirurgija. Zhurnal im. N.I. Pirogova. 2018;(6):91-100. (In Russ.). https://doi.org/10.17116/hirurgia2018691-100
  42. Dissanayaka WL, Zhang C. Scaffold-based and Scaffold-free Strategies in Dental Pulp Regeneration. J Endod. 2020;46(9S):81-89.  https://doi.org/10.1016/j.joen.2020.06.022
  43. Luo J, Wu Z, Dai Y, Wang X, Ye R, Huang H, Xie X. Biofunctional micro/nanostructured «volcano-like» layer-coated 3D porous Ti-10Ta-2Nb-2Zr scaffolds improve osteogenesis and osseointegration for dental implants in vitro and in vivo. Surface and Coatings Technology. 2021;427.  https://doi.org/10.1016/j.surfcoat.2021.127852
  44. Hodonsky C, Mundada L, Wang S, Witt R, Raff G, Kaushal S, Si MS. Effects of scaffold material used in cardiovascular surgery on mesenchymal stem cells and cardiac progenitor cells. Ann Thorac Surg. 2015;99(2):605-611.  https://doi.org/10.1016/j.athoracsur.2014.08.071
  45. Nappi F, Spadaccio C, Fraldi M, Acar C. Use of bioresorbable scaffold for neopulmonary artery in simple transposition of great arteries: Tissue engineering moves steps in pediatric cardiac surgery. International Journal of Cardiology. 2015;201:639-643.  https://doi.org/10.1016/j.ijcard.2015.08.124
  46. Banerjee S, Szepes M, Dibbert N, Rios-Camacho J-C, Kirschning A, Gruh I, Dräger G. Dextran-based scaffolds for in-situ hydrogelation: Use for next generation of bioartificial cardiac tissuesextran-based scaffolds for in-situ hydrogelation: Use for next generation of bioartificial cardiac tissues. Carbohydrate Polymers. 2021;262.  https://doi.org/10.1016/j.carbpol.2021.117924

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.