The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Shavarova E.K.

Peoples’ Friendship University of Russia;
Vinogradov City Clinical Hospital

Shavarov A.A.

Peoples’ Friendship University of Russia

Akhmetov R.E.

Scientific and production company PHARMASOFT LLC

Kobalava Z.D.

Peoples’ Friendship University of Russia named after Patris Lumumber

Cognitive impairments in cardiological patients: diagnosis and prevention

Authors:

Shavarova E.K., Shavarov A.A., Akhmetov R.E., Kobalava Z.D.

More about the authors

Read: 2365 times


To cite this article:

Shavarova EK, Shavarov AA, Akhmetov RE, Kobalava ZD. Cognitive impairments in cardiological patients: diagnosis and prevention. Russian Journal of Cardiology and Cardiovascular Surgery. 2022;15(6):560‑569. (In Russ.)
https://doi.org/10.17116/kardio202215061560

Recommended articles:
In-hospital resu­lts of thoracoscopic box-lesion radiofrequency left atrial abla­tion for atrial fibrillation. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;(5):483-488
The possibilities of Mexi­dol in the complex therapy of arte­rial hype­rtension. Russian Journal of Cardiology and Cardiovascular Surgery. 2024;(5):572-580
Modern approaches to diagnosis and treatment of syndrome of auto­nomic dysfunction in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11-2):66-75

References:

  1. https://cr.minzdrav.gov.ru/recomend/617_1 
  2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed. American Psychiatric Publishing, 2013. «Updates to DSM-5 Criteria & Text». American Psychiatric Association. Retrieved April 18, 2022.
  3. Ostroumova OD, Parfenov VA, Ostroumova TM, et al. Expert consensus. Effect of antihypertensive therapy on cognitive functions. Systemic Hypertension. 2021;18(1):5-12.  https://doi.org/10.26442/2075082X.2021.1.200575
  4. World Health Organization, Alzheimer’s Disease International. Dementia: a public health priority. Geneva: World Health Organization; 2012. https://www.who.int/mental_health/publications/dementia_report_2012/en/
  5. Patterson C. World Alzheimer report 2018. Alzheimer’s Disease International, London 2018.
  6. Michel JP. Is It Possible to Delay or Prevent Age-Related Cognitive Decline? Korean J Fam Med. 2016;37(5):263-266.  https://doi.org/https://doi.org/10.4082/kjfm.2016.37.5.263
  7. Vicario A, Coca A, Gasecki D, et al. Effects of antihypertensive treatment on cognitive decline. ESH Scientific Newsletter. 2019;20:nr. 73. 
  8. Ou YN, Tan CC, Shen XN, et al. Blood pressure and risks of cognitive impairment and dementia. Hypertension. 2020;76:217-225.  https://doi.org/10.1161/HYPERTENSIONAHA.120.14993
  9. Ungvari Z, Toth P, Tarantini S, et al. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol. 2021;17:639-654.  https://doi.org/10.1038/s41581-021-00430-6
  10. O’Donnell MJ, Chin SL, Rangarajan S, et al. Global and regional effects of potentially modifiable risk factors associated with acute stroke in 32 countries (INTERSTROKE): a case-control study. Lancet Lond Engl. 2016;388:761-775.  https://doi.org/10.1016/S0140-6736(16)30506-2
  11. Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: a systematic review and meta-analysis. Lancet Neurol. 2009;8:1006-1018. https://doi.org/10.1016/S1474-4422(09)70236-4
  12. Wang F, Hua S, Zhang Y, et al. Association between small vessel disease markers, medial temporal lobe atrophy and cognitive impairment after stroke: a systematic review and meta-analysis. J Stroke Cerebrovasc Dis. 2021:30(1);105460. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105460
  13. Biffi A, Bailey D, Anderson CD, et al. Risk factors associated with early vs. delayed dementia after intracerebral hemorrhage. JAMA Neurol. 2016;73:969-976.  https://doi.org/10.1001/jamaneurol.2016.0955
  14. Gong L, Gu Y, Yu Q, et al. Prognostic factors for cognitive recovery beyond early Poststroke Cognitive Impairment (PSCI): a prospective cohort study of spontaneous intracerebral hemorrhage. Front Neurol. 2020;11:278.  https://doi.org/10.3389/fneur.2020.00278
  15. Petrovitch H, White LR, Izmirilian G, et al. Midlife blood pressure and neuritic plaques, neurofibrillary tangles, and brain weight at death: the HAAS. Honolulu-Asia aging Study. Neurobiol Aging. 2000;21:57-62.  https://doi.org/10.1016/S0197-4580(00)00106-8
  16. Toth P, Tucsek Z, Sosnowska D, et al. Age-related autoregulatory dysfunction and cerebromicrovascular injury in mice with angiotensin II-induced hypertension. J Cereb Blood Flow Metab. 2013;33:1732-1742. https://doi.org/10.1038/jcbfm.2013.143
  17. Bowman GL, Dayon L, Kirkland R, et al. Blood-brain barrier breakdown, neuroinflammation, and cognitive decline in older adults. Alzheimers Dement J Alzheimers Assoc. 2018;14:1640-1650. https://doi.org/10.1016/j.jalz.2018.06.2857
  18. Hughes D, Judge C, Murphy R, et al. Association of blood pressure lowering with incident dementia or cognitive impairment: a systematic review and meta-analysis. JAMA. 2020;323:1934-1944. https://doi.org/10.1001/jama.2020.4249
  19. Hussain S, Singh A, Rahman SO, et al. Calcium channel blocker use reduces incident dementia risk in elderly hypertensive patients: A meta-analysis of prospective studies. Neurosci Lett. 2018;671:120-127.  https://doi.org/10.1016/j.neulet.2018.02.027
  20. Peters R, Yasar S, Anderson CS, et al. Investigation of antihypertensive class, dementia, and cognitive decline: A meta-analysis. Neurology. 2020;94(3):267-281.  https://doi.org/10.1212/WNL.0000000000008732
  21. Godin O, Tzourio C, Maillard P, et al. Antihypertensive treatment and change in blood pressure are associated with the progression of white matter lesion volumes: the Three-City (3C)-Dijon Magnetic Resonance Imaging Study. Circulation. 2011;123(3):266-273.  https://doi.org/10.1161/CIRCULATIONAHA.110.961052
  22. Pase MP, Beiser A, Enserro D, et al. Association of Ideal Cardiovascular Health With Vascular Brain Injury and Incident Dementia. Stroke. 2016;47(5):1201-1206. https://doi.org/10.1161/STROKEAHA.115.012608
  23. Marzona I, O’Donnell M, Teo K, et al. Increased risk of cognitive and functional decline in patients with atrial fibrillation: results of the ONTARGET and TRANSCEND studies. CMAJ. 2012;184(6):329-336.  https://doi.org/10.1503/cmaj.111173
  24. de Bruijn RF, Heeringa J, Wolters FJ, et al. Association Between Atrial Fibrillation and Dementia in the General Population. JAMA Neurol. 2015;72(11):1288-1294. https://doi.org/10.1001/jamaneurol.2015.2161
  25. Singh-Manoux A, Fayosse A, Sabia S, et al. Atrial fibrillation as a risk factor for cognitive decline and dementia. Eur Heart J. 2017;38(34):2612-2618. https://doi.org/10.1093/eurheartj/ehx208
  26. Chen LY, Norby FL, Gottesman RF, et al. Association of Atrial Fibrillation With Cognitive Decline and Dementia Over 20 Years: The ARIC-NCS (Atherosclerosis Risk in Communities Neurocognitive Study). J Am Heart Assoc. 2018;7(6):e007301. https://doi.org/10.1161/JAHA.117.007301
  27. Liao JN, Chao TF, Liu CJ, et al. Risk and prediction of dementia in patients with atrial fibrillation-a nationwide population-based cohort study. Int J Cardiol. 2015;199:25-30.  https://doi.org/10.1016/j.ijcard.2015.06.170
  28. Kalantarian S, Stern TA, Mansour M, et al. Cognitive impairment associated with atrial fibrillation: a meta-analysis. Ann Intern Med. 2013;158(5 Pt 1):338-346.  https://doi.org/10.7326/0003-4819-158-5-201303050-00007
  29. Biessels GJ, Staekenborg S, Brunner E, et al. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5:64-74.  https://doi.org/10.1016/S1474-4422(05)70284-2
  30. Anstey KJ, von Sanden C, Salim A, et al. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166:367-378.  https://doi.org/10.1093/aje/kwm116
  31. Bunch TJ, Weiss JP, Crandall BG, et al. Atrial fibrillation is independently associated with senile, vascular, and Alzheimer’s dementia. Heart Rhythm. 2010;7(4):433-437.  https://doi.org/10.1016/j.hrthm.2009.12.004
  32. Diener H, Hart RG, Koudstaal PJ, et al. Atrial Fibrillation and Cognitive Function: JACC Review Topic of the Week. JACC. 2019;73(5):612-619.  https://doi.org/10.1016/j.jacc.2018.10.077
  33. Hindricks G, Potpara T, Dagres N, et at. Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur Heart J. 2020;42(5):373-498.  https://doi.org/10.1093/eurheartj/ehaa612
  34. Ruff CT, Giugliano RP, Braunwald E, et al. Comparison of the efficacy and safety of new oral anticoagulants with warfarin in patients with atrial fibrillation: a meta-analysis of randomised trials. Lancet. 2014;383(9921):955-962.  https://doi.org/10.1016/S0140-6736(13)62343-0
  35. Jacobs V, Woller SC, Stevens SM, et al. Percent Time With a Supratherapeutic INR in Atrial Fibrillation Patients Also Using an Antiplatelet Agent Is Associated With Long-Term Risk of Dementia. J Cardiovasc Electrophysiol. 2015;26(11):1180-1186. https://doi.org/10.1111/jce.12776
  36. Zeng D, Jiang C, Su C, et al. Anticoagulation in atrial fibrillation and cognitive decline: A systematic review and meta-analysis. Medicine (Baltimore). 2019;98(7):e14499. https://doi.org/10.1097/MD.0000000000014499
  37. O’Donnell MJ, Eikelboom JW, Yusuf S, et al. Effect of apixaban on brain infarction and microbleeds: AVERROES-MRI assessment study. Am Heart J. 2016;178:145-150.  https://doi.org/10.1016/j.ahj.2016.03.019
  38. Dagres N, Chao TZ, Fenelon G, et al. European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) expert consensus on arrhythmias and cognitive function: What is the best practice? Journal of Arrhythmia. 2018;34:99-123.  https://doi.org/10.1002/joa3.12050
  39. Qiu C, Winblad B, Marengoni A, et al. Heart failure and risk of dementia and Alzheimer disease: A population-based cohort study. Arch Intern Med. 2006;166:1003-1008. https://doi.org/10.1001/archinte.166.9.1003
  40. Sterling MR, Jannat-Khah D, Bryan J, et al. The Prevalence of Cognitive Impairment Among Adults with Incident Heart Failure: The «Reasons for Geographic and Racial Differences in Stroke» (REGARDS) Study. J Card Fail. 2019;25:130-136.  https://doi.org/10.1016/j.cardfail.2018.12.006
  41. Hammond CA, Blades NJ, Chaudhry SI, et al. Long-Term Cognitive Decline After Newly Diagnosed Heart Failure: Longitudinal Analysis in the CHS (Cardiovascular Health Study). Circ Heart Fail. 2018;11(3):e004476. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004476
  42. Vogels RLC, Oosterman JM, Van Harten B, et al. Profile of Cognitive Impairment in Chronic Heart Failure. J Am Geriatr Soc. 2007;55:1764-1770. https://doi.org/10.1111/j.1532-5415.2007.01395.x
  43. Connors EJ, Hauson AO, Barlet BD, et al. Neuropsychological Assessment and Screening in Heart Failure: a Meta-Analysis and Systematic Review. Neuropsychol Rev. 2021;31(2):312-330.  https://doi.org/10.1007/s11065-020-09463-3
  44. Nagata T, Ohara T, Hata J, et al. NT-proBNP and Risk of Dementia in a General Japanese Elderly Population: The Hisayama Study. J Am Heart Assoc. 2019;8:e011652. https://doi.org/10.1161/JAHA.118.011652
  45. Lee TC, Qian M, Liu Y, et al. Cognitive Decline Over Time in Patients with Systolic Heart Failure: Insights From WARCEF. JACC Heart Fail. 2019;7:1042-1053. https://doi.org/10.1016/j.jchf.2019.09.003
  46. Babayigit E, Murat S, Mert KU, et al. Assessment of Cerebral Blood Flow Velocities with Transcranial Doppler Ultrasonography in Heart Failure Patients with Reduced Ejection Fraction. J Stroke Cerebrovasc Dis. 2021;30:105706. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105706
  47. Román GC. Brain hypoperfusion: A critical factor in vascular dementia. Neurol Res. 2004;26:454-458.  https://doi.org/10.1179/016164104225017686
  48. Kumar R, Yadav SK, Palomares JA, et al. Reduced Regional Brain Cortical Thickness in Patients with Heart Failure. PLoS ONE. 2015;10:e0126595. https://doi.org/10.1371/journal.pone.0126595
  49. Alosco ML, Brickman AM, Spitznagel MB, et al. Cerebral perfusion is associated with white matter hyperintensities in older adults with heart failure. Congest Hear Fail. 2013;19:29-34.  https://doi.org/10.1111/chf.12025
  50. Goh FQ, Kong WKF, Wong RCC, et al. Cognitive Impairment in Heart Failure-A Review. Biology (Basel). 2022;11(2):179.  https://doi.org/10.3390/biology11020179
  51. Dolansky MA, Hawkins MA, Schaefer JT, et al. Association Between Poorer Cognitive Function and Reduced Objectively Monitored Medication Adherence in Patients with Heart Failure. Circ Hear Fail. 2016;9.  https://doi.org/10.1161/CIRCHEARTFAILURE.116.002475
  52. Holm H, Bachus E, Jujic A, et al. Cognitive test results are associated with mortality and rehospitalization in heart failure: Swedish prospective cohort study. ESC Hear Fail. 2020;7:2948-2955. https://doi.org/10.1002/ehf2.12909
  53. Lan H, Hawkins LA, Kashner M, et al. Cognitive impairment predicts mortality in outpatient veterans with heart failure. Hear Lung. 2018;47:546-552.  https://doi.org/10.1016/j.hrtlng.2018.06.008
  54. Pressler SJ, Kim J, Riley P, et al. Memory dysfunction, psychomotor slowing, and decreased executive function predict mortality in patients with heart failure and low ejection fraction. J Card Fail. 2010;16:750-760.  https://doi.org/10.1016/j.cardfail.2010.04.007
  55. Zuccalà G, Onder G, Marzetti E, et al. Use of angiotensin-converting enzyme inhibitors and variations in cognitive performance among patients with heart failure. Eur Heart J. 2005;26:226-233.  https://doi.org/10.1093/eurheartj/ehi058
  56. Fumagalli S, Pieragnoli P, Ricciardi G, et al. Cardiac resynchronization therapy improves functional status and cognition. Int J Cardiol. 2016;219:212-217.  https://doi.org/10.1016/j.ijcard.2016.06.001
  57. Duncker D, Friedel K, König T, et al. Cardiac resynchronization therapy improves psycho-cognitive performance in patients with heart failure. Europace. 2015;17:1415-1421. https://doi.org/10.1093/europace/euv005
  58. Stanek KM, Gunstad J, Spitznagel MB, et al. Improvements in Cognitive Function Following Cardiac Rehabilitation for Older Adults with Cardiovascular Disease. Int J Neurosci. 2010;121:86-93.  https://doi.org/10.3109/00207454.2010.531893
  59. Borson S, Scanlan JM, Chen PJ, et al. The Mini-Cog as a screen for dementia: Validation in a population-based sample. J Am Geriatr Soc. 2003;51:1451-1454. https://doi.org/10.1046/j.1532-5415.2003.51465.x
  60. Alagiakrishnan K, Mah D, Dyck JR, et al. Comparison of two commonly used clinical cognitive screening tests to diagnose mild cognitive impairment in heart failure with the golden standard European Consortium Criteria. Int J Cardiol. 2017;228:558-562.  https://doi.org/10.1016/j.ijcard.2016.11.193
  61. Hawkins MAW, Gathright EC, Gunstad J, et al. The MoCA and MMSE as screeners for cognitive impairment in a heart failure population: A study with comprehensive neuro-psychological testing. Heart Lung. 2014;43:462-468.  https://doi.org/10.1016/j.hrtlng.2014.05.011
  62. Pinto TCC, Machado L, Bulgacov TM, et al. Is the Montreal Cognitive Assessment (MoCA) screening superior to the Mini-Mental State Examination (MMSE) in the detection of mild cognitive impairment (MCI) and Alzheimer’s Disease (AD) in the elderly? Int Psychogeriatr. 2019;31(4):491-504.  https://doi.org/10.1017/S1041610218001370
  63. Livingston, et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet. 2020;8(396):413-446.  https://doi.org/10.1016/S0140-6736(20)30367-6
  64. Kremen WS, Beck A, Elman JA, et al. Influence of young adult cognitive ability and additional education on later-life cognition. Proc Natl Acad Sci USA. 2019;116:2021-2126. https://doi.org/10.1073/pnas.1811537116
  65. Lee ATC, Richards M, Chan WC, et al. Association of Daily Intellectual Activities With Lower Risk of Incident Dementia Among Older Chinese Adults. JAMA Psychiatry. 2018;75(7):697-703.  https://doi.org/10.1001/jamapsychiatry.2018.0657
  66. Xue B, Cadar D, Fleischmann M, et al. Effect of retirement on cognitive function: the Whitehall II cohort study. Eur J Epidemiol. 2018;33(10):989-1001. https://doi.org/10.1007/s10654-017-0347-7
  67. Loughrey DG, Kelly ME, Kelley GA, et al. Association of Age-Related Hearing Loss With Cognitive Function, Cognitive Impairment, and Dementia: A Systematic Review and Meta-analysis. JAMA Otolaryngol Head Neck Surg. 2018;144(2):115-126.  https://doi.org/10.1001/jamaoto.2017.2513
  68. Maharani A, Dawes P, Nazroo J, et al. Longitudinal Relationship Between Hearing Aid Use and Cognitive Function in Older Americans. J Am Geriatr Soc. 2018;66(6):1130-1136. https://doi.org/10.1111/jgs.15363
  69. Fann JR, Ribe AR, Pedersen HS, et al. Long-term risk of dementia among people with traumatic brain injury in Denmark: a population-based observational cohort study. Lancet Psychiatry. 2018;5(5):424-431.  https://doi.org/10.1016/S2215-0366(18)30065-8
  70. McGuinness B, Craig D, Bullock R, et al. Statins for the prevention of dementia. Cochrane Database Syst Rev. 2016;(1):CD003160. https://doi.org/10.1002/14651858.CD003160
  71. Risk reduction of cognitive decline and dementia: WHO guidelines. Geneva: World Health Organization; 2019;96. 
  72. Singh B, Parsaik AK, Mielke MM, et al. Association of mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis. 2014;39(2):271-282.  https://doi.org/10.3233/JAD-130830
  73. Etgen T, Sander D, Huntgeburth U, et al. Physical activity and incident cognitive impairment in elderly persons: the INVADE study. Arch Intern Med. 2010;170(2):186-193.  https://doi.org/10.1001/archinternmed.2009.498
  74. Barha CK, Davis JC, Falck RS, et al. Sex differences in exercise efficacy to improve cognition: A systematic review and meta-analysis of randomized controlled trials in older humans. Front Neuroendocrinol. 2017;46:71-85.  https://doi.org/10.1016/j.yfrne.2017.04.002
  75. Veronese N, Facchini S, Stubbs B, et al. Weight loss is associated with improvements in cognitive function among overweight and obese people: a systematic review and meta-analysis. Neurosci Biobehav Rev. 2017;72:87-94.  https://doi.org/10.1016/j.neubiorev.2016.11.017
  76. Sabia S, Fayosse A, Dumurgier J, et al. Association of ideal cardiovascular health at age 50 with incidence of dementia: 25 year follow-up of Whitehall II cohort study. BMJ. 2019;366:l4414. https://doi.org/10.1136/bmj.l4414
  77. McMillan JM, Mele BS, Hogan DB, et al. Impact of pharmacological treatment of diabetes mellitus on dementia risk: systematic review and meta-analysis. BMJ Open Diabetes Res Care. 2018;6:e000563. https://doi.org/10.1136/bmjdrc-2018-000563
  78. Sommerlad A, Ruegger J, Singh-Manoux A, et al. Marriage and risk of dementia: systematic review and meta-analysis of observational studies. J Neurol Neurosurg Psychiatry. 2018;89(3):231-238.  https://doi.org/10.1136/jnnp-2017-316274
  79. Fedin AI, Zakharov VV, Tanashyan MM, et al. Results of an international multicenter, randomized, double-blind, placebo-controlled study assessing the efficacy and safety of sequential therapy with Mexidol and Mexidol FORTE 250 in patients with chronic brain ischemia (MEMO). Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2021;121(11):7-16. (In Russ.). https://doi.org/10.17116/jnevro20211211117
  80. Voronina TA. Mexidol: the spectrum of pharmacological effects. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2012;112(12):86 90. (In Russ.).
  81. Shchulkin AV. A modern concept of antihypoxic and antioxidant effects of mexidol. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2018;118(12 2):87-93. (In Russ.). https://doi.org/10.17116/jnevro201811812287

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.