The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Ugarov I.V.

A.I. Evdokimov Moscow State Medical Stomatological University, Moscow Russia

Smirnova O.A.

Moscow Clinical Research and Practical Centre, Moscow Health Department, Moscow

Lychkova A.E.

Moscow Clinical Research Centre, Moscow Russia

Kostyuchenko L.N.

Moscow Clinical Research Centre, Moscow Russia

Omics technologies and the choice of treatment strategy for inflammatory intestinal diseases

Authors:

Ugarov I.V., Smirnova O.A., Lychkova A.E., Kostyuchenko L.N.

More about the authors

Read: 2120 times


To cite this article:

Ugarov IV, Smirnova OA, Lychkova AE, Kostyuchenko LN. Omics technologies and the choice of treatment strategy for inflammatory intestinal diseases. Russian Journal of Evidence-Based Gastroenterology. 2018;7(3):18‑39. (In Russ.)
https://doi.org/10.17116/dokgastro2018703118

Recommended articles:
Heavy eye syndrome: clinical mani­festations, diagnosis and treatment. Russian Annals of Ophthalmology. 2024;(5):112-117
Giant peri­cranial sinus with exte­nsive occi­pital calvarium defect. Burdenko's Journal of Neurosurgery. 2024;(6):77-87
Clinical case of auri­cular gouty tophi. Russian Bulletin of Otorhinolaryngology. 2024;(6):80-84
Surgical access for thoracic and intrathoracic goiter. Piro­gov Russian Journal of Surgery. 2025;(1):54-61

References:

  1. Kirsner JB. Historical origins of current IBD concepts. World J Gastroenterol. 2001;7:175-184. https://doi.org/10.3748/wjg.v7.i2.175
  2. Lockhart-Mummery HE, Morson BC. Crohn’s disease (regional enteritis) of the large intestine and its distinction from ulcerative colitis. Gut. 1960;1:87-105. https://doi.org/10.1136/gut.1.2.87
  3. Leung JM, Sands LP, Wang Y, Poon A, Kwok PY, Kane JP, PulÂlinger CR. Apolipoprotein E e4 allele increases the risk of early postoperative delirium in older patients undergoing noncardiac surgery. Anesthesiology. 2007;107:3:406-411. https://doi.org/10.1097/01.anes.0000278905.07899.df
  4. Kurilo LF, Andreeva MV, Kolomiets OL, Sorokina TM, Chernyh VB, Shileyko LV, Khayat SSh, Demikova NS, Kozlova SI. Geneticheskie sindromy s narusheniyami razvitiya organov polovoi sistemy. Andrologiya i genital’naya khirurgiya. 2013;4:17-27. (In Russ.)
  5. Demikova NS, Asanov AYu. Sovremennoe sostoyanie, perspektivy i rol’ klinicheskoi genetiki v pediatrii. Pediatriya. 2012;91(3):53-58. (In Russ.)
  6. Alvarez-Garcia I, Miska EA. MicroRNA functions in animal development and human disease. Development. 2005;132:4653-4662. https://doi.org/10.1242/dev.02073
  7. Orholm M, Munkholm P, Langholz E, Nielsen OH, Sorensen TIF, Binder V. Familial occurrence of inflammatory bowel disease. N Engl J Med. 1991;324:2:84-88. https://doi.org/10.1056/nejm199101103240203
  8. Russel MG, Dorant E, Brummer RJ, van de Kruijs MA, Muris JW, Bergers JM, Goedhard J, Stockbrugger RW. Appendectomy and the risk of developing ulcerative colitis or Crohn’s disease: results of a large case-control study. South Limburg Inflammatory Bowel Disease Study Group. Gastroenterology. 1997;113:2:377-382. https://doi.org/10.1053/gast.1997.v113.pm9247453
  9. Barrett JC, Hansoul S, Nicolae DL, Cho JH, Duerr RH, Rioux JD, Brant SR, Silverberg MS, Taylor KD, Barmada MM, Bitton A, Dassopoulos T, Datta LW, Green T, Griffiths AM, Kistner EO, Murtha MT, Regueiro MD, Rotter JI, Schumm LP, Steinhart AH, Targan SR, Xavier RJ, Libioulle C, Sandor C, Lathrop M, Belaiche J, Dewit O, Gut I, Heath S, Laukens D, Mni M, Rutgeerts P, Van Gossum A, Zelenika D, Franchimont D, Hugot J-P, de Vos M, Vermeire S, Louis E, Cardon LR, Anderson CA, Drummond H, Nimmo E, Ahmad T, Prescott NJ, Onnie CM, Fisher SA, Marchini J, Ghori J, Bumpstead S, Gwilliam R, Tremelling M, Deloukas P, Mansfield J, Jewell D, Satsangi J, Mathew CG, Parkes M, Georges M, Daly MJ. Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nature genetics. 2008;40:8:955-962. https://doi.org/10.3410/f.1115764.572647
  10. Wu F, Zikusoka M, Trindade A, Dassopoulos T, Harris ML, Bayless TM, Brant SR, Chakravarti S, Kwon JH. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology. 2008;135:1624-1635. https://doi.org/10.1053/j.gastro.2008.07.068
  11. Bian Z, Li L, Cui J, Zhang H, Liu Y, Zhang CY, Zen K. Role of miR-150-targeting c-Myb in colonic epithelial disruption during dextran sulphate sodium-induced murine experimental colitis and human ulcerative colitis. J Pathol. 2011;225:544-553. https://doi.org/10.1002/path.2907
  12. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell. 2007;131:146-159. https://doi.org/10.1016/j.cell.2007.07.021
  13. Takagi T, Naito Y, Mizushima K, Hirata I, Yagi N, Tomatsuri N, Ando T, Oyamada Y, Isozaki Y, Hongo H, Uchiyama K, Handa O, Kokura S, Ichikawa H, Yoshikawa T. Increased expression of microRNA in the inflamed colonic mucosa of patients with active ulcerative colitis. J Gastroenterol Hepatol. 2010;25 Suppl 1:S129-S133. https://doi.org/10.1111/j.1440-1746.2009.06216.x
  14. Wu F, Zhang S, Dassopoulos T, Harris ML, Bayless TM, Meltzer SJ, Brant SR, Kwon JH. Identification of microRNAs associated with ileal and colonic Crohn’s disease. Inflamm Bowel Dis. 2010;16:1729-1738. https://doi.org/10.1002/ibd.21267
  15. Fasseu M, Tréton X, Guichard C, Pedruzzi E, Cazals-Hatem D, Richard C, Aparicio T, Daniel F, Soulé JC, Moreau R, Bouhnik Y, Laburthe M, Groyer A, Ogier-Denis E. Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PLoS One. 2010;5:e13160. https://doi.org/10.1371/journal.pone.0013160
  16. Pekow JR, Dougherty U, Mustafi R, Zhu H, Kocherginsky M, Rubin DT, Hanauer SB, Hart J, Chang EB, Fichera A, Joseph LJ, Bissonnette M. miR-143 and miR-145 are downregulated in ulcerative colitis: putative regulators of inflammation and protooncogenes. Inflamm Bowel Dis. 2012;18:94-100. https://doi.org/10.1002/ibd.21742
  17. Nguyen HT, Dalmasso G, Yan Y, Laroui H, Dahan S, Mayer L, Sitaraman SV, Merlin D. MicroRNA-7 modulates CD98 expression during intestinal epithelial cell differentiation. J Biol Chem. 2010;285:1479-1489. https://doi.org/10.1074/jbc.m109.057141
  18. Brest P, Lapaquette P, Souidi M, Lebrigand K, Cesaro A, Vouret-Craviari V, Mari B, Barbry P, Mosnier JF, Hébuterne X, Harel-Bellan A, Mograbi B, Darfeuille-Michaud A, Hofman P. A synonymous variant in IRGM alters a binding site for miR-196 and causes deregulation of IRGM-dependent xenophagy in Crohn’s disease. Nat Genet. 2011;43:242-245. https://doi.org/10.1038/ng.762
  19. Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA, Fisher SA, Roberts RG, Nimmo ER, Cummings FR, Soars D, Drummond H, Lees CW, Khawaja SA, Bagnall R, Burke DA, Todhunter CE, Ahmad T, Onnie CM, McArdle W, Strachan D, Bethel G, Bryan C, Lewis CM, Deloukas P, Forbes A, Sanderson J, Jewell DP, Satsangi J, Mansfield JC, Cardon L, Mathew CG. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn’s disease susceptibility. Nat Genet. 2007;39:830-832. https://doi.org/10.1038/ng2061
  20. Zwiers A, Kraal L, van de Pouw Kraan TC, Wurdinger T, Bouma G, Kraal G. Cutting edge: a variant of the IL-23R gene associated with inflammatory bowel disease induces loss of microRNA regulation and enhanced protein production. J Immunol. 2012;188:1573-1577. https://doi.org/10.4049/jimmunol.1101494
  21. Wu F, Guo NJ, Tian H, Marohn M, Gearhart S, Bayless TM, Brant SR, Kwon JH. Peripheral blood microRNAs distinguish active ulcerative colitis and Crohn’s disease. Inflamm Bowel Dis. 2011;17:241-250. https://doi.org/10.1002/ibd.21450
  22. Zahm AM, Thayu M, Hand NJ, Horner A, Leonard MB, Friedman JR. Circulating microRNA is a biomarker of pediatric Crohn disease. J Pediatr Gastroenterol Nutr. 2011;53:26-33. https://doi.org/10.1097/mpg.0b013e31822200cc
  23. Paraskevi A, Theodoropoulos G, Papaconstantinou I, Mantzaris G, Nikiteas N, Gazouli M. Circulating MicroRNA in inflammatory bowel disease. J Crohns Colitis. 2012;6:9: 900-904. https://doi.org/10.1016/j.crohns.2012.02.006
  24. Duttagupta R, DiRienzo S, Jiang R, Bowers J, Gollub J, Kao J, Kearney K, Rudolph D, Dawany NB, Showe MK, Stamato T, Getts RC, Jones KW. Genome-wide maps of circulating miRNA biomarkers for ulcerative colitis. PLoS One. 2012;7:e31241. https://doi.org/10.1371/journal.pone.0031241
  25. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34:D140-D144. https://doi.org/10.1093/nar/gkj112.
  26. Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259-269. https://doi.org/10.1038/nrc1840
  27. Pan X, Wang ZX, Wang R. MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther. 2011;10:1224-1232. https://doi.org/10.4161/cbt.10.12.14252
  28. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene. 2007;26:2799-2803. https://doi.org/10.1038/sj.onc.1210083
  29. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65:7065-7070. https://doi.org/10.1158/0008-5472.can-05-1783
  30. Medina PP, Nolde M, Slack FJ. OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature. 2010;467:86-90. https://doi.org/10.1038/nature09284
  31. Zhou R, Hu G, Gong AY, Chen XM. Binding of NF-kappaB p65 subunit to the promoter elements is involved in LPS induced transactivation of miRNA genes in human biliary epithelial cells. Nucleic Acids Res. 2010;38:3222-3232. https://doi.org/10.1093/nar/gkq056
  32. Pasparakis M. Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev Immunol. 2009;9:778-788. https://doi.org/10.1038/nri2655
  33. Janssen HL, Reesink HW, Zeuzem S, Lawitz E, RodriguezTorres M, Chen A, Davis C, King B, Levin AA, Hodges MR. A randomized, double-blind, placebo (plb) controlled safety and anti-viral proof of concept study of miravirsen (MIR), an oligonucleotide targeting miR-122, in treatment naïve patients with genotype 1 (gt1) chronic HCV infection [abstract]. Hepatology. 2011;54:1430A.
  34. Rosen HR. Clinical practice. Chronic hepatitis C infection. N Engl J Med. 2011;364:2429-2438. https://doi.org/10.1056/nejmcp1006613
  35. Uhlig HH, Schwerd T, Koletzko S, Shah N, Kammermeier J, Elkadri A, Ouahed J, Wilson DC, Travis SP, Turner D, Klein C, Snapper SB, Muise AM. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology. 2014;147:990-1007.e3. https://doi.org/10.1053/j.gastro.2014.07.023
  36. Bianco AM, Zanin V, Girardelli M, Magnolato A, Martelossi S, Tommasini A, Marcuzzi A, Crovella S. A common genetic background could explain early-onset Crohn’s disease. Med Hypotheses. 2012;78:520-522. https://doi.org/10.1016/j.mehy.2012.01.023
  37. Uhlig HH. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory boÂwel disease. Gut. 2013;62:1795-1805. https://doi.org/10.1136/gutjnl-2012-303956
  38. Oretti C, Barbi E, Marchetti F, Lepore L, Ventura A, D’Osualdo A, Gattorno M, Martelossi S, Tommasini A. Diagnostic challenge of hyper-IgD syndrome in four children with inflammatory gastrointestinal complaints. Scand J Gastroenterol. 2006;41:430-436. https://doi.org/10.1080/00365520500327743
  39. De Pieri C, Taddio A, Insalaco A, Barbi E, Lepore L, Ventura A, Tommasini A. Different presentations of mevalonate kinase deficiency: a case series. Clin Exp Rheumatol. 2015;33:437-442.
  40. Bader-Meunier B, Florkin B, Sibilia J, Acquaviva C, Hachulla E, Grateau G, Richer O, Farber CM, Fischbach M, Hentgen V, Jego P, Laroche C, Neven B, Lequerré T, Mathian A, Pellier I, Touitou I, Rabier D, Prieur AM, Cuisset L, Quartier P. Mevalonate kinase deficiency: a survey of 50 patients. Pediatrics. 2011;128:e152-e159. https://doi.org/10.1542/peds.2010-3639
  41. Levy M, Arion A, Berrebi D, Cuisset L, Jeanne-Pasquier C, BaderMeunier B, Jung C. Severe early-onset colitis revealing mevalonate kinase deficiency. Pediatrics. 2013;132:e779-e783. https://doi.org/10.1542/peds.2012-3344
  42. Bianco AM, Girardelli M, Vozzi D, Crovella S, Kleiner G, Marcuzzi A. Mevalonate kinase deficiency and IBD: shared genetic background. Gut. 2014;63:1367-1368. https://doi.org/10.1136/gutjnl-2013-306555
  43. Cardinale CJ, Kelsen JR, Baldassano RN, Hakonarson H. Impact of exome sequencing in inflammatory bowel disease. World J Gastroenterol. 2013;19:6721-6729. https://doi.org/10.3748/wjg.v19.i40.6721
  44. Egritas O, Dalgic B. Infantile colitis as a novel presentation of familial Mediterranean fever responding to colchicine therapy. J Pediatr Gastroenterol Nutr. 2011;53:102-105. https://doi.org/10.1097/MPG.0b013e31820cfab1
  45. Zhou Q, Lee GS, Brady J, Datta S, Katan M, Sheikh A, Martins MS, Bunney TD, Santich BH, Moir S, Kuhns DB, Long Priel DA, Ombrello A, Stone D, Ombrello MJ, Khan J, Milner JD, Kastner DL, Aksentijevich I. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency. Am J Hum Genet. 2012;91:713-720.
  46. Jéru I, Duquesnoy P, Fernandes-Alnemri T, Cochet E, Yu JW, Lackmy-Port-Lis M, Grimprel E, Landman-Parker J, Hentgen V, Marlin S, McElreavey K, Sarkisian T, Grateau G, Alnemri ES, Amselem S. Mutations in NALP12 cause hereditary periodic fever syndromes. Proc Natl Acad Sci USA. 2008;105:1614-1619.
  47. Borte S, Celiksoy MH, Menzel V, Ozkaya O, Ozen FZ, Hammarström L, Yildiran A. Novel NLRP12 mutations associated with intestinal amyloidosis in a patient diagnosed with common variable immunodeficiency. Clin Immunol. 2014;154:105-111.
  48. Kitamura A, Sasaki Y, Abe T, Kano H, Yasutomo K. An inherited mutation in NLRC4 causes autoinflammation in human and mice. J Exp Med. 2014;211:2385-2396.
  49. Romberg N, Al Moussawi K, Nelson-Williams C, Stiegler AL, Loring E, Choi M, Overton J, Meffre E, Khokha MK, Huttner AJ, West B, Podoltsev NA, Boggon TJ, Kazmierczak BI, Lifton RP. Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation. Nat Genet. 2014;46:1135-1139.
  50. Canna SW, de Jesus AA, Gouni S, Brooks SR, Marrero B, Liu Y, DiMattia MA, Zaal KJ, Sanchez GA, Kim H, Chapelle D, Plass N, Huang Y, Villarino AV, Biancotto A, Fleisher TA, Duncan JA, O’Shea JJ, Benseler S, Grom A, Deng Z, Laxer RM, GoldbachMansky R. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome. Nat Genet. 2014;46:1140-1146.
  51. Worthey EA, Mayer AN, Syverson GD, Helbling D, Bonacci BB, Decker B, Serpe JM, Dasu T, Tschannen MR, Veith RL, Basehore MJ, Broeckel U, Tomita-Mitchell A, Arca MJ, Casper JT, Margolis DA, Bick DP, Hessner MJ, Routes JM, Verbsky JW, Jacob HJ, Dimmock DP. Making a definitive diagnosis: successful clinical application of whole exome sequencing in a child with intractable inflammatory bowel disease. Genet Med. 2011;13:255-262.
  52. Speckmann C, Lehmberg K, Albert MH, Damgaard RB, Fritsch M, Gyrd-Hansen M, Rensing-Ehl A, Vraetz T, Grimbacher B, Salzer U, Fuchs I, Ufheil H, Belohradsky BH, Hassan A, Cale CM, Elawad M, Strahm B, Schibli S, Lauten M, Kohl M, Meerpohl JJ, Rodeck B, Kolb R, Eberl W, Soerensen J, von Bernuth H, Lorenz M, Schwarz K, Zur Stadt U, Ehl S. X-linked inhibitor of apoptosis (XIAP) deficiency: the spectrum of presenting manifestations beyond hemophagocytic lymphohistiocytosis. Clin Immunol. 2013;149:133-141. https://doi.org/10.1016/j.clim.2013.07.004
  53. Zeissig Y, Petersen BS, Milutinovic S, Bosse E, Mayr G, Peuker K, Hartwig J, Keller A, Kohl M, Laass MW, Billmann-Born S, Brandau H, Feller AC, Röcken C, Schrappe M, Rosenstiel P, Reed JC, Schreiber S, Franke A, Zeissig S. XIAP variants in male Crohn’ s disease. Gut. 2015;64:66-76. https://doi.org/10.1136/gutjnl-2013-306520
  54. Aguilar C, Lenoir C, Lambert N, Bègue B, Brousse N, Canioni D, Berrebi D, Roy M, Gérart S, Chapel H, Schwerd T, Siproudhis L, Schäppi M, Al-Ahmari A, Mori M, Yamaide A, Galicier L, Neven B, Routes J, Uhlig HH, Koletzko S, Patel S, Kanegane H, Picard C, Fischer A, Bensussan NC, Ruemmele F, Hugot JP, Latour S. Characterization of Crohn disease in X-linked inhibitor of apoptosis-deficient male patients and female symptomatic carriers. J Allergy Clin Immunol. 2014;134:1131-1141.e9.
  55. Meeths M, Entesarian M, Al-Herz W, Chiang SC, Wood SM, AlAteeqi W, Almazan F, Boelens JJ, Hasle H, Ifversen M, Lund B, van den Berg JM, Gustafsson B, Hjelmqvist H, Nordenskjöld M, Bryceson YT, Henter JI. Spectrum of clinical presentations in familial hemophagocytic lymphohistiocytosis type 5 patients with mutations in STXBP2. Blood. 2010;116:2635-2643.
  56. Kouklakis G, Efremidou EI, Papageorgiou MS, Pavlidou E, Manolas KJ, Liratzopoulos N. Complicated Crohn’s-like colitis, associated with Hermansky-Pudlak syndrome, treated with Infliximab: a case report and brief review of the literature. J Med Case Rep. 2007;1:176. https://doi.org/10.1186/1752-1947-1-176
  57. Hazzan D, Seward S, Stock H, Zisman S, Gabriel K, Harpaz N, Bauer JJ. Crohn’s-like colitis, enterocolitis and perianal disease in Hermansky-Pudlak syndrome. Colorectal Dis. 2006;8:539-543.
  58. Mora AJ, Wolfsohn DM. The management of gastrointestinal disease in Hermansky—Pudlak syndrome. J Clin Gastroenterol. 2011;45:700-702. https://doi.org/10.1097/MCG.0b013e3181fd2742
  59. Echenique I, García Gonzrález JM, Echenique IA, Izquierdo NJ, Mella JR, Barasorda E, Mella MT, Figueroa-Boilo S. Hermansky Pudlak syndrome: an unusual form of procto-colitis. Bol Asoc Med P R. 2008;100:76-79.
  60. Anderson PD, Huizing M, Claassen DA, White J, Gahl WA. Hermansky-Pudlak syndrome type 4 (HPS-4): clinical and molecular characteristics. Hum Genet. 2003;113:10-17.
  61. Okou DT, Mondal K, Faubion WA, Kobrynski LJ, Denson LA, Mulle JG, Ramachandran D, Xiong Y, Svingen P, Patel V, Bose P, Waters JP, Prahalad S, Cutler DJ, Zwick ME, Kugathasan S. Exome sequencing identifies a novel FOXP3 mutation in a 2-generation family with inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2014;58:561-568. https://doi.org/10.1097/MPG.0000000000000302
  62. Betterle C, Greggio NA, Volpato M. Clinical review 93: Autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab. 1998;83:1049-1055.
  63. Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schäffer AA, Noyan F, Perro M, Diestelhorst J, Allroth A, Murugan D, Hätscher N, Pfeifer D, Sykora KW, Sauer M, Kreipe H, Lacher M, Nustede R, Woellner C, Baumann U, Salzer U, Koletzko S, Shah N, Segal AW, Sauerbrey A, Buderus S, Snapper SB, Grimbacher B, Klein C. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361:2033-2045.
  64. Glocker EO, Frede N, Perro M, Sebire N, Elawad M, Shah N, Grimbacher B. Infant colitis—it’s in the genes. Lancet. 2010;376:1272.
  65. Glocker E, Grimbacher B. Inflammatory bowel disease: is it a primary immunodeficiency? Cell Mol Life Sci. 2012;69:41-48. https://doi.org/10.1007/s00018-011-0837-9
  66. Glocker EO, Kotlarz D, Klein C, Shah N, Grimbacher B. IL-10 and IL-10 receptor defects in humans. Ann N Y Acad Sci. 2011;1246:102-107. https://doi.org/10.1111/j.1749-6632.2011.06339.x
  67. Shah N, Kammermeier J, Elawad M, Glocker EO. Interleukin-10 and interleukin-10-receptor defects in inflammatory bowel disease. Curr Allergy Asthma Rep. 2012;12:373-379. https://doi.org/10.1007/s11882-012-0286-z
  68. Engelhardt KR, Shah N, Faizura-Yeop I, Kocacik Uygun DF, Frede N, Muise AM, Shteyer E, Filiz S, Chee R, Elawad M, Hartmann B, Arkwright PD, Dvorak C, Klein C, Puck JM, Grimbacher B, Glocker EO. Clinical outcome in IL-10- and IL-10 receptor-deficient patients with or without hematopoietic stem cell transplantation. J Allergy Clin Immunol. 2013;131:825-830.
  69. Pigneur B, Escher J, Elawad M, Lima R, Buderus S, Kierkus J, Guariso G, Canioni D, Lambot K, Talbotec C, Shah N, Begue B, Rieux-Laucat F, Goulet O, Cerf-Bensussan N, Neven B, Ruemmele FM. Phenotypic characterization of very early-onset IBD due to mutations in the IL10, IL10 receptor alpha or beta gene: a survey of the Genius Working Group. Inflamm Bowel Dis. 2013;19:2820-2828. https://doi.org/10.1097/01.MIB.0000435439.22484.d3
  70. Moran CJ, Walters TD, Guo CH, Kugathasan S, Klein C, Turner D, Wolters VM, Bandsma RH, Mouzaki M, Zachos M, Langer JC, Cutz E, Benseler SM, Roifman CM, Silverberg MS, Griffiths AM, Snapper SB, Muise AM. IL-10R polymorphisms are associated with very-early-onset ulcerative colitis. Inflamm Bowel Dis. 2013;19:115-123. https://doi.org/10.1002/ibd.22974
  71. Marcuzzi A, Girardelli M, Bianco AM, Martelossi S, Magnolato A, Tommasini A, Crovella S. Inflammation profile of four early onset Crohn patients. Gene. 2012;493:282-285. https://doi.org/10.1016/j.gene.2011.11.043
  72. Mao H, Yang W, Lee PP, Ho MH, Yang J, Zeng S, Chong CY, Lee TL, Tu W, Lau YL. Exome sequencing identifies novel compound heterozygous mutations of IL-10 receptor 1 in neonatalonset Crohn’s disease. Genes Immun. 2012;13:437-442. https://doi.org/10.1038/gene.2012.8
  73. Lee CH, Hsu P, Nanan B, Nanan R, Wong M, Gaskin KJ, Leong RW, Murchie R, Muise AM, Stormon MO. Novel de novo mutations of the interleukin-10 receptor gene lead to infantile onset inflammatory bowel disease. J Crohns Colitis. 2014;8:1551-1556. https://doi.org/10.1016/j.crohns.2014.04.004
  74. Visser G, Rake JP, Labrune P, Leonard JV, Moses S, Ullrich K, Wendel U, Groenier KH, Smit GP. Granulocyte colony-stimulating factor in glycogen storage disease type 1b. Results of the European Study on Glycogen Storage Disease Type 1. Eur J Pediatr. 2002;161 (Suppl 1):S83-S87. https://doi.org/10.1007/s00431-002-1010-0
  75. Yamaguchi T, Ihara K, Matsumoto T, Tsutsumi Y, Nomura A, Ohga S, Hara T. Inflammatory bowel disease-like colitis in glycogen storage disease type 1b. Inflamm Bowel Dis. 2001;7:128-132. https://doi.org/10.1097/00054725-200105000-00008
  76. Saltik-Temizel IN, Koçak N, Ozen H, Yüce A, Gürakan F, Demir H. Inflammatory bowel disease-like colitis in a young Turkish child with glycogen storage disease type 1b and elevated platelet count. Turk J Pediatr. 2005;47:180-182.
  77. Bégin P, Patey N, Mueller P, Rasquin A, Sirard A, Klein C, Haddad. E, Drouin É, Le Deist F. Inflammatory bowel disease and T cell lymphopenia in G6PC3 deficiency. J Clin Immunol. 2013;33:520-525. https://doi.org/10.1007/s10875-012-9833-6
  78. D’Agata ID, Paradis K, Chad Z, Bonny Y, Seidman E. Leucocyte adhesion deficiency presenting as a chronic ileocolitis. Gut. 1996;39:605-608. https://doi.org/10.1136/gut.39.4.605
  79. Uzel G, Kleiner DE, Kuhns DB, Holland SM. Dysfunctional LAD-1 neutrophils and colitis. Gastroenterology. 2001;121:958-964. https://doi.org/10.1053/gast.2001.28022
  80. Schäppi MG, Smith VV, Goldblatt D, Lindley KJ, Milla PJ. Colitis in chronic granulomatous disease. Arch Dis Child. 2001;84:147-151. https://doi.org/10.1136/adc.84.2.147
  81. Matute JD, Arias AA, Wright NA, Wrobel I, Waterhouse CC, Li XJ, Marchal CC, Stull ND, Lewis DB, Steele M, Kellner JD, Yu W, Meroueh SO, Nauseef WM, Dinauer MC. A new genetic subgroup of chronic granulomatous disease with autosomal recessive mutations in p40 phox and selective defects in neutrophil NADPH oxidase activity. Blood. 2009;114:3309-3315. https://doi.org/10.1182/blood-2009-07-231498
  82. Al-Bousafy A, Al-Tubuly A, Dawi E, Zaroog S, Schulze I. Libyan Boy with Autosomal Recessive Trait (P22-phox Defect) of Chronic Granulomatous Disease. Libyan J Med. 2006;1:162-171. https://doi.org/10.4176/060905
  83. Muise AM, Xu W, Guo CH, Walters TD, Wolters VM, Fattouh R, Lam GY, Hu P, Murchie R, Sherlock M, Gana JC, Russell RK, Glogauer M, Duerr RH, Cho JH, Lees CW, Satsangi J, Wilson  DC, Paterson AD, Griffiths AM, Silverberg MS, Brumell JH. NADPH oxidase complex and IBD candidate gene studies: identification of a rare variant in NCF2 that results in reduced binding to RAC2. Gut. 2012;61:1028-1035. https://doi.org/10.1136/gutjnl-2011-300078
  84. Marks DJ, Miyagi K, Rahman FZ, Novelli M, Bloom SL, Segal AW. Inflammatory bowel disease in CGD reproduces the clinicopathological features of Crohn’s disease. Am J Gastroenterol. 2009;104:117-124. https://doi.org/10.1038/ajg.2008.72
  85. Dhillon SS, Fattouh R, Elkadri A, Xu W, Murchie R, Walters T, Guo C, Mack D, Huynh HQ, Baksh S, Silverberg MS, Griffiths AM, Snapper SB, Brumell JH, Muise AM. Variants in nicotinamide adenine dinucleotide phosphate oxidase complex components determine susceptibility to very early onset inflammatory bowel disease. Gastroenterology. 2014;147:680-689.e2. https://doi.org/10.1053/j.gastro.2014.06.005
  86. De Luca A, Smeekens SP, Casagrande A, Iannitti R, Conway KL, Gresnigt MS, Begun J, Plantinga TS, Joosten LA, van der Meer JW, Chamilos G, Netea MG, Xavier RJ, Dinarello CA, Romani L, van de Veerdonk FL. IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans. Proc Natl Acad Sci USA. 2014;111:3526-3531. https://doi.org/10.1073/pnas.1322831111
  87. Catucci M, Castiello MC, Pala F, Bosticardo M, Villa A. Autoimmunity in wiskott-Aldrich syndrome: an unsolved enigma. Front Immunol. 2012;3:209. https://doi.org/10.3389/fimmu.2012.00209
  88. Castiello MC, Bosticardo M, Pala F, Catucci M, Chamberlain N, van Zelm MC, Driessen GJ, Pac M, Bernatowska E, Scaramuzza S, Aiuti A, Sauer AV, Traggiai E, Meffre E, Villa A, van der Burg M. Wiskott-Aldrich Syndrome protein deficiency perturbs the homeostasis of B-cell compartment in humans. J Autoimmun. 2014;50:42-50. https://doi.org/10.1016/j.jaut.2013.10.006
  89. Cannioto Z, Berti I, Martelossi S, Bruno I, Giurici N, Crovella S, Ventura A. IBD and IBD mimicking enterocolitis in children younger than 2 years of age. Eur J Pediat. 2009;168:149-155. https://doi.org/10.1007/s00431-008-0721-2
  90. Felgentreff K, Perez-Becker R, Speckmann C, Schwarz K, Kalwak K, Markelj G, Avcin T, Qasim W, Davies EG, Niehues T, Ehl S. Clinical and immunological manifestations of patients with atypical severe combined immunodeficiency. Clin Immunol. 2011;141:73-82. https://doi.org/10.1016/j.clim.2011.05.007
  91. Villa A, Notarangelo LD, Roifman CM. Omenn syndrome: inflammation in leaky severe combined immunodeficiency. J Allergy Clin Immunol. 2008;122:1082-1086. https://doi.org/10.1016/j.jaci.2008.09.037
  92. Ozgür TT, Asal GT, Cetinkaya D, Orhan D, Kiliç SS, Usta Y, Ozen H, Tezcan I. Hematopoietic stem cell transplantation in a CD3 gamma-deficient infant with inflammatory bowel disease. Pediatr Transplant. 2008;12:910-913. https://doi.org/10.1111/j.1399-3046.2008.00957.x
  93. Goldman FD, Ballas ZK, Schutte BC, Kemp J, Hollenback C, Noraz N, Taylor N. Defective expression of p56lck in an infant with severe combined immunodeficiency. J Clin Invest. 1998;102:421-429. https://doi.org/10.1172/JCI3205
  94. Hauck F, Randriamampita C, Martin E, Gerart S, Lambert N, Lim A, Soulier J, Maciorowski Z, Touzot F, Moshous D, Quartier P, Heritier S, Blanche S, Rieux-Laucat F, Brousse N, Callebaut I, Veillette A, Hivroz C, Fischer A, Latour S, Picard C. Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol. 2012;130:1144-1152.e11. https://doi.org/10.1016/j.jaci.2012.07.029
  95. Faletra F, Bruno I, Berti I, Pastore S, Pirrone A, Tommasini A. A red baby should not be taken too lightly. Acta Paediatr. 2012;101:e573-e577. https://doi.org/10.1111/apa.12018
  96. Notarangelo LD. Functional T cell immunodeficiencies (with T cells present). Annu Rev Immunol. 2013;31:195-225. https://doi.org/10.1146/annurev-immunol-032712-095927
  97. Rohr J, Pannicke U, Döring M, Schmitt-Graeff A, Wiech E, Busch A, Speckmann C, Müller I, Lang P, Handgretinger R, Fisch P, Schwarz K, Ehl S. Chronic inflammatory bowel disease as key manifestation of atypical ARTEMIS deficiency. J Clin Immunol. 2010;30:314-320. https://doi.org/10.1007/s10875-0099349-x
  98. Alangari A, Alsultan A, Adly N, Massaad MJ, Kiani IS, Aljebreen A, Raddaoui E, Almomen AK, Al-Muhsen S, Geha RS, Alkuraya FS. LPS-responsive beige-like anchor (LRBA) gene mutation in a family with inflammatory bowel disease and combined immunodeficiency. J Allergy Clin Immunol. 2012;130:481-488.e2. https://doi.org/10.1016/j.jaci.2012.05.043
  99. Agarwal S, Smereka P, Harpaz N, Cunningham-Rundles C, Mayer L. Characterization of immunologic defects in patients with common variable immunodeficiency (CVID) with intestinal disease. Inflamm Bowel Dis. 2011;17:251-259. https://doi.org/10.1002/ibd.21376
  100. Lopez-Herrera G, Tampella G, Pan-Hammarström Q, Herholz P, Trujillo-Vargas CM, Phadwal K, Simon AK, Moutschen M, Etzioni A, Mory A, Srugo I, Melamed D, Hultenby K, Liu C, Baronio M, Vitali M, Philippet P, Dideberg V, Aghamohammadi A, Rezaei N, Enright V, Du L, Salzer U, Eibel H, Pfeifer D, Veelken H, Stauss H, Lougaris V, Plebani A, Gertz EM, Schäffer AA, Hammarström L, Grimbacher B. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet. 2012;90:986-1001. https://doi.org/10.1016/j.ajhg.2012.04.015
  101. Serwas NK, Kansu A, Santos-Valente E, KuloÄŸlu Z, Demir A, Yaman A, Yaneth Gamez Diaz L, Artan R, Sayar E, Ensari A, Grimbacher B, Boztug K. Atypical manifestation of LRBA deficiency with predominant IBD-like phenotype. Inflamm Bowel Dis. 2015;21:40-47. https://doi.org/10.1097/MIB.0000000000000266
  102. Takahashi N, Matsumoto K, Saito H, Nanki T, Miyasaka N, Kobata T, Azuma M, Lee SK, Mizutani S, Morio T. Impaired CD4 and CD8 effector function and decreased memory T cell populations in ICOS-deficient patients. J Immunol. 2009;182:5515-5527. https://doi.org/10.4049/jimmunol.0803256
  103. Salzer E, Kansu A, Sic H, Májek P, Ikincioğullari A, Dogu FE, Prengemann NK, Santos-Valente E, Pickl WF, Bilic I, Ban SA, Kuloğlu Z, Demir AM, Ensari A, Colinge J, Rizzi M, Eibel H, Boztug K. Early-onset inflammatory bowel disease and common variable immunodeficiency-like disease caused by IL-21 deficiency. J Allergy Clin Immunol. 2014;133:1651-1659.e12. https://doi.org/10.1016/j.jaci.2014.02.034
  104. Salzer U, Chapel HM, Webster AD, Pan-Hammarström Q, Schmitt-Graeff A, Schlesier M, Peter HH, Rockstroh JK, Schneider P, Schäffer AA, Hammarström L, Grimbacher B. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet. 2005;37:820-828. https://doi.org/10.1038/ng1600
  105. Amosov IS, Skondin LA. A comparative evaluation of lung ventilation in patients with dust-caused bronchitis and pneumoconiosis using roentgenpneumopolygraphy. Radiol Diagn (Berl). 1990;31:49-56.
  106. Levy J, Espanol-Boren T, Thomas C, Fischer A, Tovo P, Bordigoni P, Resnick I, Fasth A, Baer M, Gomez L, Sanders EA, Tabone MD, Plantaz D, Etzioni A, Monafo V, Abinun M, Hammarstrom L, Abrahamsen T, Jones A, Finn A, Klemola T, DeVries E, Sanal O, Peitsch MC, Notarangelo LD. Clinical spectrum of X-linked hyperIgM syndrome. J Pediatr. 1997;131:47-54. https://doi.org/10.1016/S0022-3476(97)70123-9
  107. Wang LL, Zhou W, Zhao W, Tian ZQ, Wang WF, Wang XF, Chen TX. Clinical features and genetic analysis of 20 Chinese patients with X-linked hyper-IgM syndrome. J Immunol Res. 2014;2014:683160. https://doi.org/10.1155/2014/683160
  108. Quartier P, Bustamante J, Sanal O, Plebani A, Debré M, Deville A, Litzman J, Levy J, Fermand JP, Lane P, Horneff G, Aksu G, Yalçin I, Davies G, Tezcan I, Ersoy F, Catalan N, Imai K, Fischer A, Durandy A. Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to ActivationInduced Cytidine Deaminase deficiency. Clin Immunol. 2004;110:22-29. https://doi.org/10.1016/j.clim.2003.10.007
  109. Bestas B, Turunen JJ, Blomberg KE, Wang Q, Månsson R, El Andaloussi S, Berglöf A, Smith CI. Splice-correction strategies for treatment of X-linked agammaglobulinemia. Curr Allergy Asthma Rep. 2015;15:510. https://doi.org/10.1007/s11882-014-0510-0
  110. Maekawa K, Yamada M, Okura Y, Sato Y, Yamada Y, Kawamura N, Ariga T. X-linked agammaglobulinemia in a 10-year-old boy with a novel non-invariant splice-site mutation in Btk gene. Blood Cells Mol Dis. 2010;44:300-304. https://doi.org/10.1016/j.bcmd.2010.01.004
  111. Conley ME, Dobbs AK, Quintana AM, Bosompem A, Wang YD, Coustan-Smith E, Smith AM, Perez EE, Murray PJ. Agammaglobulinemia and absent B lineage cells in a patient lacking the p85α subunit of PI3K. J Exp Med. 2012;209:463-470. https://doi.org/10.1084/jem.20112533
  112. Becker C, Watson AJ, Neurath MF. Complex roles of caspases in the pathogenesis of inflammatory bowel disease. Gastroenterology. 2013;144:283-293. https://doi.org/10.1053/j.gastro.2012.11.035
  113. Chen R, Giliani S, Lanzi G, Mias GI, Lonardi S, Dobbs K, Manis J, Im H, Gallagher JE, Phanstiel DH, Euskirchen G, Lacroute P, Bettinger K, Moratto D, Weinacht K, Montin D, Gallo E, Mangili G, Porta F, Notarangelo LD, Pedretti S, Al-Herz W, Alfahdli W, Comeau AM, Traister RS, Pai SY, Carella G, Facchetti F, Nadeau KC, Snyder M, Notarangelo LD. Whole-exome sequencing identifies tetratricopeptide repeat domain 7A (TTC7A) mutations for combined immunodeficiency with intestinal atresias. J Allergy Clin Immunol. 2013;132:656-664.e17. https://doi.org/10.1016/j.jaci.2013.06.013
  114. Avitzur Y, Guo C, Mastropaolo LA, Bahrami E, Chen H, Zhao Z, Elkadri A, Dhillon S, Murchie R, Fattouh R, Huynh H, Walker JL, Wales PW, Cutz E, Kakuta Y, Dudley J, Kammermeier J, Powrie F, Shah N, Walz C, Nathrath M, Kotlarz D, Puchaka J, Krieger JR, Racek T, Kirchner T, Walters TD, Brumell JH, Griffiths AM, Rezaei N, Rashtian P, Najafi M, Monajemzadeh M, Pelsue S, McGovern DP, Uhlig HH, Schadt E, Klein C, Snapper SB, Muise AM. Mutations in tetratricopeptide repeat domain 7A result in a severe form of very early onset inflammatory bowel disease. Gastroenterology. 2014;146:1028-1039. https://doi.org/10.1053/j.gastro.2014.01.015
  115. Lemoine R, Pachlopnik-Schmid J, Farin HF, Bigorgne A, Debré M, Sepulveda F, Héritier S, Lemale J, Talbotec C, RieuxLaucat F, Ruemmele F, Morali A, Cathebras P, Nitschke P, BoleFeysot C, Blanche S, Brousse N, Picard C, Clevers H, Fischer A, de Saint Basile G. Immune deficiency-related enteropathylymphocytopenia-alopecia syndrome results from tetratricopeptide repeat domain 7A deficiency. J Allergy Clin Immunol. 2014;134:1354-1364.e6. https://doi.org/10.1016/j.jaci.2014.07.019
  116. Fabre A, Charroux B, Martinez-Vinson C, Roquelaure B, Odul E, Sayar E, Smith H, Colomb V, Andre N, Hugot JP, Goulet O, Lacoste C, Sarles J, Royet J, Levy N, Badens C. SKIV2L mutations cause syndromic diarrhea, or trichohepatoenteric syndrome. Am J Hum Genet. 2012;90:689-692. https://doi.org/10.1016/j.ajhg.2012.02.009
  117. Fabre A, Martinez-Vinson C, Goulet O, Badens C. Syndromic diarrhea/Tricho-hepato-enteric syndrome. Orphanet J Rare Dis. 2013;8:5. https://doi.org/10.1186/1750-1172-8-5
  118. Fabre A, Breton A, Coste ME, Colomb V, Dubern B, Lachaux A, Lemale J, Mancini J, Marinier E, Martinez-Vinson C, Peretti N, Perry A, Roquelaure B, Venaille A, Sarles J, Goulet O, Badens C. Syndromic (phenotypic) diarrhoea of infancy/tricho-hepato-enteric syndrome. Arch Dis Child. 2014;99:35-38. https://doi.org/10.1136/archdischild-2013-304016
  119. Cheng LE, Kanwar B, Tcheurekdjian H, Grenert JP, Muskat M, Heyman MB, McCune JM, Wara DW. Persistent systemic inflammation and atypical enterocolitis in patients with NEMO syndrome. Clin Immunol. 2009;132:124-131. https://doi.org/10.1016/j.clim.2009.03.514
  120. Mizukami T, Obara M, Nishikomori R, Kawai T, Tahara Y, Sameshima N, Marutsuka K, Nakase H, Kimura N, Heike T, Nunoi H. Successful treatment with infliximab for inflammatory colitis in a patient with X-linked anhidrotic ectodermal dysplasia with immunodeficiency. J Clin Immunol. 2012;32:39-49. https://doi.org/10.1007/s10875-011-9600-0
  121. Fiskerstrand T, Arshad N, Haukanes BI, Tronstad RR, Pham KD, Johansson S, Håvik B, Tønder SL, Levy SE, Brackman D, Boman H, Biswas KH, Apold J, Hovdenak N, Visweswariah SS, Knappskog PM. Familial diarrhea syndrome caused by an activating GUCY2C mutation. N Engl J Med. 2012;366:1586-1595. https://doi.org/10.1056/NEJMoa1110132
  122. Lohr NJ, Molleston JP, Strauss KA, Torres-Martinez W, Sherman EA, Squires RH, Rider NL, Chikwava KR, Cummings OW, Morton DH, Puffenberger EG. Human ITCH E3 ubiquitin ligase deficiency causes syndromic multisystem autoimmune disease. Am J Hum Genet. 2010;86:447-453. https://doi.org/10.1016/j.ajhg.2010.01.028
  123. Stengaard-Pedersen K, Thiel S, Gadjeva M, Møller-Kristensen M, Sørensen R, Jensen LT, Sjøholm AG, Fugger L, Jensenius JC. Inherited deficiency of mannan-binding lectin-associated serine protease 2. N Engl J Med. 2003;349:554-560. https://doi.org/10.1056/NEJMoa022836
  124. Freeman EB, Köglmeier J, Martinez AE, Mellerio JE, Haynes L, Sebire NJ, Lindley KJ, Shah N. Gastrointestinal complications of epidermolysis bullosa in children. Br J Dermatol. 2008;158:1308-1314. https://doi.org/10.1111/j.1365-2133.2008.08507.x
  125. Blaydon DC, Biancheri P, Di WL, Plagnol V, Cabral RM, Brooke MA, van Heel DA, Ruschendorf F, Toynbee M, Walne A, O’Toole EA, Martin JE, Lindley K, Vulliamy T, Abrams DJ, MacDonald TT, Harper JI, Kelsell DP. Inflammatory skin and bowel disease linked to ADAM17 deletion. N Engl J Med. 2011;365:1502-1508. https://doi.org/10.1056/NEJMoa1100721
  126. Kern JS, Herz C, Haan E, Moore D, Nottelmann S, von Lilien T, Greiner P, Schmitt-Graeff A, Opitz OG, Bruckner-Tuderman L, Has C. Chronic colitis due to an epithelial barrier defect: the role of kindlin-1 isoforms. J Pathol. 2007;213:462-470. https://doi.org/10.1002/path.2253
  127. Campbell P, Morton PE, Takeichi T, Salam A, Roberts N, Proudfoot LE, Mellerio JE, Aminu K, Wellington C, Patil SN, Akiyama M, Liu L, McMillan JR, Aristodemou S, IshidaYamamoto A, Abdul-Wahab A, Petrof G, Fong K, Harnchoowong S, Stone KL, Harper JI, McLean WH, Simpson MA, Parsons M, McGrath JA. Epithelial inflammation resulting from an inherited loss-of-function mutation in EGFR. J Invest Dermatol. 2014;134:2570-2578. https://doi.org/10.1038/jid.2014.164
  128. Brooke MA, O’Toole EA, Kelsell DP. Exoming into rare skin disease: EGFR deficiency. J Invest Dermatol. 2014;134:2486-2488. https://doi.org/10.1038/jid.2014.228
  129. Naviglio S, Arrigo S, Martelossi S, Villanacci V, Tommasini A, Loganes C, Fabretto A, Vignola S, Lonardi S, Ventura A. Severe inflammatory bowel disease associated with congenital alteration of transforming growth factor beta signaling. J Crohns Colitis. 2014;8:770-774. https://doi.org/10.1016/j.crohns.2014.01.013
  130. Hugot JP, Chamaillard M, Zouali H. Lesage S, Cézard JP, Belaiche J, Almer S, Curt Tysk, O’Morain CA, Gassull M, Binder V, Finkel Y, Cortot A, Modigliani R, Laurent-Puig P, Gower-Rousseau C, Macry J, Colombel JF, Sahbatou M, Thomas G. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:6837:599-603. https://doi.org/10.1038/35079107
  131. Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R, Britton H, Moran Th, Karaliuskas R, Duerr RH, Achkar JP, Brant SR, Bayless TM, Kirschner BS, Hanauer SB, Nuñez G, Cho JH. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature. 2001;411:6837:603-606. https://doi.org/10.1038/35079114
  132. Jostins L. Dispatches from the functional phase of genome biology. Genome Biol. 2012;13(6):316. https://doi.org/10.1186/gb-2012-13-6-316
  133. Ahmad T, Armuzzi A, Bunce M, Mulcahy–Hawes K, Marshall SE, Orchard TR, Crawshaw J, Large O, De Silva A, Cook JT, Barnardo M, Cullen S, Welsh KI, Jewell DP. The molecular classification of the clinical manifestations of Crohn’s disease. Gastroenterology. 2002;122(4):854-866. Erratum in: Gastroenterology. 2003;125(1):281. https://doi.org/10.1053/gast.2002.32413
  134. Abreu MT, Taylor KD, Lin YC, Hang T, Gaiennie J, Landers CJ, Vasiliauskas EA, Kam LY, Rojany M, Papadakis KA, Rotter JI, Targan SR, Yang H. Mutations in NOD2 are associated with fibrostenosing disease in patients with Crohn’s disease. Gastroenterology. 2002;123:679-688. https://doi.org/10.1053/gast.2002.35393
  135. Homer CR, Richmond AL, Rebert NA, Achkar JP, McDonald C. ATG16L1 and NOD2 interact in an autophagy-dependent antibacterial pathway implicated in Crohn’s disease pathogenesis. Gastroenterology. 2010;139(5):1630-1641, 1641.e1-2. https://doi.org/10.1053/j.gastro.2010.07.006
  136. Koslowski MJ, Kübler I, Chamaillard M, Schaeffeler E, Reinisch W, Wang G, Beisner J, Teml A, Peyrin-Biroulet L, Winter S, Herrlinger KR, Rutgeerts P, Vermeire S, Cooney R, Fellermann K, Jewell D, Bevins CL, Schwab M, Stange EF, Wehkamp J. Genetic variants of Wnt transcription factor TCF-4 (TCF7L2) putative promoter region are associated with small intestinal Crohn’s disease. PLoS One. 2009;4:2:e4496. https://doi.org/10.1371/journal.pone.0004496
  137. Glas J, Seiderer J, Nagy M, Fries C, Beigel F, Weidinger M, Pfennig S, Klein W, Epplen JT, Lohse P, Folwaczny M, Göke B, Ochsenkühn T, Diegelmann J, Müller-Myhsok B, Roeske D, Brand S. Evidence for STAT4 as a common autoimmunegene: rs7574865 is associated with colonic Crohn’s disease and early diseaseonset. PLoS One. 2010;5:4:e10373. https://doi.org/10.1371/journal.pone.0010373
  138. Annese V, Piepoli A, Latiano A, Lombardi G, Napolitano G, Caruso N, Cocchiara E, Accadia L, Perri F, Andriulli A. HLA-DRB1 alleles may influence disease phenotype in patients with inflammatory bowel disease: a critical reappraisal with review of the literature. Dis Colon Rectum. 2005;48(1):57-65; discussion 64-65. https://doi.org/10.1007/s10350-004-0747-0
  139. Waschke KA, Villani AC, Vermeire S, Dufresne L, Chen TC, Bitton A, Cohen A, Thomson A, Wild GE. Tumor necrosis factor receptor gene polymorphisms in Crohn’s disease: association with clinical phenotypes. Am J Gastroenterol. 2005;100(5):1126-1133. https://doi.org/10.1111/j.1572-0241.2005.40534.x
  140. Annese V, Lombardi G, Perri F, D’Inca R, Ardizzone S, Riegler G, Giaccari S, Vecchi M, Castiglione F, Gionchetti P, Cocchiara E, Vigneri S, Latiano A, Palmieri O, Andriulli A. Variants of CARD15 are associated with an aggressive clinical course of Crohn’s disease — an IG-IBD study. Am J Gastroenterol. 2005;100(1):84-92. https://doi.org/10.1111/j.1572-0241.2005.40705.x
  141. Henckaerts L, Van Steen K, Verstreken I, Cleynen I, Franke A, Schreiber S, Rutgeerts P, Vermeire S. Genetic risk profiling and prediction of disease course in Crohn’s disease patients. Clin Gastroenterol Hepatol. 2009;7:9:972-980.e2. https://doi.org/10.1016/j.cgh.2009.05.001
  142. Roussomoustakaki M, Satsangi J, Welsh K, Louis E, Fanning G, Targan S, Landers C, Jewell DP. Genetic markers may predict disease behavior in patients withulcerative colitis. Gastroenterology. 1997;112(6):1845-1853. https://doi.org/10.1053/gast.1997.v112.pm9178675
  143. Spravochnik po koloproktologii [Tekst]. Pod red. YuA Shelygin, LA Blagodarnyi. M.: Litterra, 2012;596. (In Russ.) ISBN 9785423500696
  144. Travis SP, Farrant JM, Ricketts C, Nolan DJ, Mortensen NM, Kettlewell MG, Jewell DP. Predicting outcome in severe ulcerative colitis. Gut. 1996;38:6:905-910. https://doi.org/10.1136/gut.38.6.905
  145. Kostyuchenko L.N. (red.). Nutritsiologiya v gastroenterologii: Rukovodstvo dlya vrachei. M.: MK, 2013;432. (In Russ.)
  146. Hold GL, Smith M, Grange C. Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years? World J Gastroenterol. 2014;20:1192-1210. https://doi.org/10.3748/wjg.v20.i5.1192
  147. Peterson DA, Frank DN, Pace NR, Gordon JI. Metagenomic approaches for defining the pathogenesis of inflammatory bowel diÂseases. Cell Host Microbe. 2008;3:417-427. https://doi.org/10.1016/j.chom.2008.05.001
  148. Walker AW, Sanderson JD, Churcher C, Parkes GC, Hudspith BN, Rayment N, Brostoff J, Parkhill J, Dougan G, Petrovska L. High-throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol. 2011;11:7. https://doi.org/10.1186/1471-2180-11-7
  149. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007;104:13780-13785. https://doi.org/10.1073/pnas.0706625104
  150. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43:3380-3389. https://doi.org/10.1128/jcm.43.7.3380-3389.2005
  151. Hansen R, Russell RK, Reiff C, Louis P, McIntosh F, Berry SH, Mukhopadhya I, Bisset WM, Barclay AR, Bishop J, Flynn DM, McGrogan P, Loganathan S, Mahdi G, Flint HJ, El-Omar EM, Hold GL. Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. Am J Gastroenterol. 2012;107:1913-1922. https://doi.org/10.1038/ajg.2012.335
  152. Mukhopadhya I, Thomson JM, Hansen R, Berry SH, El-Omar EM, Hold GL. Detection of Campylobacter concisus and other Campylobacter species in colonic biopsies from adults with ulcerative colitis. PLoS ONE. 2011;6:e21490. https://doi.org/10.1371/journal.pone.0021490
  153. Lupp C, Robertson ML, Wickham ME, Inna Sekirov, Champion OL, Gaynor EC, Finlay BB. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe. 2007;2:204. https://doi.org/10.1016/j.chom.2007.08.002
  154. Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF, Pan C, Shah M, Halfvarson J, Tysk C, Henrissat B, Raes J, Verberkmoes NC, Fraser CM, Hettich RL, Jansson JK. Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease. PLoS ONE. 2012;7:e49138. https://doi.org/10.1371/journal.pone.0049138
  155. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol. 2012;13:R79. https://doi.org/10.1186/gb-2012-13-9-r79
  156. Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, Kambal A, Monaco CL, Zhao G, Fleshner P, Stappenbeck TS, McGovern D, Keshavarzian A, Mutlu EA, Sauk J, Gevers D, Xavier RJ, Wang D, Parkes M, Virgin HW. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell. 2015;160:447-460. https://doi.org/10.1016/j.cell.2015.01.002
  157. Kruis W, Fric P, Pokrotnieks J. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut. 2004;53:1617-1623. https://doi.org/10.1136/gut.2003.037747
  158. Dignass A, Lindsay JO, Sturm A, Windsor A, Colombel JF, Allez M, D’Haens G, D’Hoore A, Mantzaris G, Novacek G, Öresland T, Reinisch W, Sans M, Stange E, Vermeire S, Travis S, Van Assche G. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis part 2: current management. J Crohn’s Colitis. 2012;6:991-1030. https://doi.org/10.1016/j.crohns.2012.09.002
  159. Tursi A, Brandimarte G, Papa A, Giglio A, Elisei W, Giorgetti GM, Forti G, Morini S, Hassan C, Pistoia MA, Modeo ME, Rodino’ S, D’Amico T, Sebkova L, Sacca’ N, Di Giulio E, Luzza F, Imeneo M, Larussa T, Di Rosa S, Annese V, Danese S, Gasbarrini A. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am J Gastroenterol. 2010;105:2218-2227. https://doi.org/10.1038/ajg.2010.218
  160. Colman RJ, Rubin DT. Fecal microbiota transplantation as therapy for inflammatory bowel disease: a systematic review and metaanalysis. J Crohns Colitis. 2014;8:1569-1581. https://doi.org/10.1016/j.crohns.2014.08.006
  161. Rossen NG, Fuentes S, van der Spek MJ, Jan G. Tijssen, Hartman JHA, Duflou A, Löwenberg M, van den Brink GR, Mathus-Vliegen EMH, de Vos WM, Zoetendal EG, D’Haens GR, Ponsioen CY. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015;149:110-118.e4. https://doi.org/10.1053/j.gastro.2015.03.045
  162. Moayyedi P, Surette MG, Kim PT, Libertucci J, Wolfe M, Onischi C, Armstrong D, Marshall JK, Kassam Z, Reinisch W, Lee Â CH. Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized, controlled trial. Gastroenterology. 2015;149:102-109.e6. https://doi.org/10.1053/j.gastro.2015.04.001
  163. Rutgeerts P, Hiele M, Geboes K, Peeters M, Penninckx F, Aerts R, Kerremans R. Controlled trial of metronidazole treatment for prevention of Crohn’s recurrence after ileal resection. Gastroenterol. 1995;108:1617-1621. https://doi.org/10.1016/0016-5085(95)90121-3
  164. Lindsay JO, Whelan K, Stagg AJ. Clinical, microbiological, and immunological effects of fructo-oligosaccharide in patients with Crohn’s disease. Gut. 2006;55:348-355. https://doi.org/10.1136/gut.2005.074971
  165. Benjamin JL, Hedin CR, Koutsoumpas A, Ng SC, McCarthy NE, Hart AL, Kamm MA, Sanderson JD, Knight SC, Forbes A, Stagg AJ, Whelan K, Lindsay JO. Randomised, double-blind, placebo-controlled trial of fructo-oligosaccharides in active Crohn’s disease. Gut. 2011;60:923-929. https://doi.org/10.1136/gut.2010.232025
  166. Gionchetti P, Rizzello F, Helwig U, Venturi A, Lammers KM, Brigidi P, Vitali B, Poggioli G, Miglioli M, Campieri M. Prophylaxis of pouchitis onset with probiotic therapy: a double-blind, placebo-controlled trial. Gastroenterol. 2003;124:1202-1209. https://doi.org/10.1016/s0016-5085(03)00171-9
  167. Shen J, Zuo ZX, Mao AP. Effect of probiotics on inducing remission and maintaining therapy in ulcerative colitis, Crohn’s disease, and pouchitis: metaanalysis of randomized controlled trials. Inflamm Bowel Dis. 2014;20:21-35. https://doi.org/10.1097/01.mib.0000437495.30052.be
  168. Cho JH. The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol. 2008;8:458-466. https://doi.org/10.1038/nri2340
  169. Lee G, Buchman AL. DNA-driven nutritional therapy of inflammatory bowel disease. Nutrition. 2009;25:885-891. https://doi.org/10.1016/j.nut.2009.06.011
  170. Zhous S, Lim LY, Chowbay B. Herbal modulation of P-glycoprotein. Drug Metab Rev. 2004;36:57-104.
  171. Philpott M, Mackay L, Ferguson LR, Forbes D, Skinner M. Cell culture models in developing nutrigenomics foods for inflammatory bowel disease. Mutat Res. 2007;622:94-102. https://doi.org/10.1016/j.mrfmmm.2007.04.013
  172. Astley SB, Elliott RM. (2007) The European Nutrigenomics Organisation: linking genomics, nutrition and health research. Journal of the science of food and agriculture. 2007;87(7):1180-1184. https://doi.org/10.1111/j.1467-3010.2004.00431.x
  173. Ugarov IV, Chernykh VB, Sharkova IV, Sharkov AA, Novosyolova OG, Ivanov NV, Potapov VA. Ekspertnaya sistema xGenCloud – instrument prediktivnoi meditsiny. Sbornik nauchnych trudov «Molekulyarno-biologicheskie tekhnologii V meditsinskoi praktike». Pod red. AB Maslennikova. Vyp. 25. Novosibirsk, 2016;151:32-43. (In Russ.)
  174. Ugarov IV. Ekspertnaya sistema xGenCloud dlya avtomaticheskogo naznacheniya i interpretatsii rezul’tatov geneticheskogo testirovaniya. Svidetel’stvo ob ofitsial’noi registratsii programmy dlya EVM №2013615830, 20.06.13. (In Russ.)

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.