The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Salkov V.N.

Scientific Center of Neurology

Khudoyerkov R.M.

Scientific Center of Neurology

Changes in iron content in brain structures during aging and associated neurodegenerative diseases

Authors:

Salkov V.N., Khudoyerkov R.M.

More about the authors

Read: 9239 times


To cite this article:

Salkov VN, Khudoyerkov RM. Changes in iron content in brain structures during aging and associated neurodegenerative diseases. Russian Journal of Archive of Pathology. 2020;82(5):73‑78. (In Russ.)
https://doi.org/10.17116/patol20208205173

Recommended articles:
Diagnosis and treatment approaches for sialorrhea in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(10):29-34
Neurochemical mechanisms of tremor in Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):64-72
Cognitive impairment in patients with Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):81-90
Bladder dysfunction in patients with stages I—III of Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):91-99
Como­rbidity of depression and deme­ntia: epidemiological, biological and therapeutic aspe­cts. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):113-121
Inflammatory aging. Part 1. The principal biochemical mechanisms. Russian Journal of Preventive Medi­cine. 2024;(12):145-150
Characteristics of postmortem changes in the brain. Fore­nsic Medi­cal Expe­rtise. 2024;(6):56-61

References:

  1. Bogolepova IN, Malofeeva LI, Agapov PA, Malofeeva IG, Sveshnikov AV. Structural changes in cortical formations of the human brain in Alzheimer’s disease. Mezhdunarodnyi zhurnal prikladnykh i fundamental’nykh issledovanii. 2019;(6):9-13. (In Russ.). Accessed April 14, 2020. https://www.applied-research.ru/ru/article/view?id=12758
  2. Fernández-Ballesteros R, Robine JM, Walker A, Kalache A. Active aging: A global goal. Curr Gerontol Geriatr Res. 2013;2013:298012. https://doi.org/10.1155/2013/298012
  3. Illarioshkin SN. Konformatsionnye bolezni mozga. M.: Yanus-K; 2003. (In Russ.). https://www.neurology.ru/konformacionnye-bolezni-mozga
  4. Götz ME, Double K, Gerlach M, Youdim MB, Riederer P. The relevance of iron in the pathogenesis of Parkinson’s disease. Ann N Y Acad Sci. 2004;1012:193-208.  https://doi.org/10.1196/annals.1306.017
  5. Szabo ST, Harry GJ, Hayden KM, Szabo DT, Birnbaum L. Comparison of metal levels between postmortem brain and ventricular fluid in Alzheimer’s disease and nondemented elderly controls. Toxicol Sci. 2016;150(2):292-300.  https://doi.org/10.1093/toxsci/kfv325
  6. Squitti R, Rossini PM, Cassetta E, Moffa F, Psqualetti P, Cortesi M, Colloca A, Rossi L, Finazzi-Agro A. D-penicillamine reduces serum oxidatitive stress in Alzheimer’s disease patients. Eur J Clin Invest. 2002;32(1):51-59.  https://doi.org/10.1046/j.1365-2362.2002.00933.x
  7. Li K, Reichman H. Role of iron in neurodegenerative diseases. J Neural Transm. 2016;123(4):389-399.  https://doi.org/10.1007/s00702-016-1508-7
  8. Zecca L, Gallorini M, Schunemann V, Trautwein AX, Gerlach M, Riederer P, Vezzoni P, Tampellini D. Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem. 2001;76(6):1766-1773. https://doi.org/10.1046/j.1471-4159.2001.00186.x
  9. Zecca L, Stroppolo A, Gatti A, Tampellini D, Toscani M, Gallorini M, Giaveri G, Arosio P, Santambrogio P, Fariello RG, Karatekin E, Kleinman MH, Turro N, Hornykiewicz O, Zucca FA. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Proc Natl Acad Sci USA. 2004;101(26):9843-9848. https://doi.org/10.1073/pnas.0403495101
  10. James SA, Roberts BR, Hare DJ, De Jonge MD, Birchall IE, Jenkins NL, Cherny RA, Bush AI, McColl G. Direct in vivo imaging of ferrous iron dyshomeostasis in ageing Caenorhabditis elegans. Chem Sci. 2015;6(5):2952-2962. https://doi.org/10.1039/c5sc00233h
  11. Hare DJ, Double KL. Iron and dopamine: A toxic couple. Brain. 2016;139(Pt 4):1026-1035. https://doi.org/10.1093/brain/aww022
  12. Korzhevskiĭ DE, Sukhorukova EG, Grigor’ev IP. The distribution of iron in the substantia nigra in the human brain. S.S. Korsakov Journal of Neurology and Psychiatry/Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2013;113(6):77-80. (In Russ.). Accessed April 14, 2020. https://www.mediasphera.ru/issues/zhurnal-nevrologii-i-psikhiatrii-im-s-s-korsakova/2013/6/031997-72982013614
  13. Reinert A, Morawski M, Seeger J, Arendt T, Reinert T. Iron concentrations in neurons and glial cells with estimates on ferritin concentrations. BMC Neurosci. 2019;20(1):25.  https://doi.org/10.1186/s12868-019-0507-7
  14. Trist BG, Hare DJ, Double KL. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell. 2019;18(6):e13031. https://doi.org/10.1111/acel.13031
  15. Bishop GM, Dang TN, Dringen R, Robinson SR. Accumulation of non-transferrin-bound iron by neurons, astrocytes, and microglia. Neurotox Res. 2011;19(3):443-451.  https://doi.org/10.1007/s12640-010-9195-x
  16. Hare DJ, Gerlach M, Riederer P. Considerations for measuring iron in post-mortem tissue of Parkinson’s disease patients. J Neural Transm. 2012;119(12):1515-1521. https://doi.org/10.1007/s00702-012-0898-4
  17. Schrag M, Dickson A, Jiffry A, Kirsch D, Vinters HV, Kirsch W. The effect of formalin fixation on the levels of brain transition metals in archived samples. Biometals. 2008;23(6):1123-1127. https://doi.org/10.1007/s10534-010-9359-4
  18. Ramos P, Santos A, Pinto NR, Mendes R, Magalhães T, Almeida A. Iron levels in the human brain: a post-mortem study of anatomical region differences and age-related changes. J Trace Elem Med Biol. 2014;28(1):13-17.  https://doi.org/10.1016/j.jtemb.2013.08.001
  19. Bogolepova IN, Malofeeva LI. Basic principles of structural asymmetry of cortex formations in the human brain. Physics-Uspekhi/Uspekhi fiziologicheskikh nauk. 2004;35(3):3-19. Accessed April 14, 2020. (In Russ.). https://doi.org/10.1016/j.jtemb.2013.08.001
  20. Xu X, Wang Q, Zhang M. Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study. Neuroimage. 2008;40(1):35-42.  https://doi.org/10.1016/j.neuroimage.2007.11.017
  21. Hagemeier J, Geurts JJ, Zivadinov R. Brain iron accumulation in aging and neurodegenerative disorders. Expert Rev Neurother. 2012;12(12):1467-1480. https://doi.org/10.1586/ern.12.128
  22. Ayton S, Lei P, Adlard PA, Volitakis I, Cherny RA, Bush AI, Finkelstein DI. Iron accumulation confers neurotoxicity to a vulnerable population of nigral neurons: implications for Parkinson’s disease. Mol Neurodegen. 2014;9(1):27.  https://doi.org/10.1186/1750-1326-9-27
  23. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13(10):1045-1060. https://doi.org/10.1016/s1474-4422(14)70117-6
  24. Genoud S, Roberts BR, Gunn AP, Halliday GM, Lewis SJG, Ball HJ, Hare DJ, Double KL. Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson’s disease brain. Metallomics. 2017;9(10):1447-1455. https://doi.org/10.1039/c7mt00244k
  25. Martin WR, Wieler M, Gee M. Midbrain iron content in early Parkinson disease: a potential biomarker of disease status. Neurology. 2008;70(16):1411-1417. https://doi.org/10.1212/01.wnl.0000286384.31050.b5
  26. Wallis LI, Paley MN, Graham JM, Grűnewald RA, Wignall EL, Joy HM, Griffiths PL. MRI assessment of basal ganglia iron deposition in Parkinson’s disease. J Magn Reson Imaging. 2008;28(5): 1061-1067. https://doi.org/10.1002/jmri.21563
  27. De Farias CC, Maes M, Bonifacio KL, Matsumoto AK, Bortolasci CC, Nogueira AS, Brinholi FF, Morimoto HK, de Melo LB, Moreira EG, Barbosa DS. Parkinson’s disease is accompanied by intertwined alterations in iron metabolism and activated immune-inflammatory and oxidative stress pathways. CNS Neurol Disord Drug Targets. 2017;16(4):484-491.  https://doi.org/10.2174/1871527316666170223161004
  28. Illarioshkin SN, Vlassenko AG, Fedotova EYu. Current means for identifying the latent stage of a neurodegenerative process. Annaly klinicheskoy i experimental’noy nevrologii. 2013;7(2):39-50. Accessed April 14, 2020. (In Russ.). https://www.annaly-nevrologii.ru
  29. Chwiej J, Adamek D, Szczerbowska-Boruchowska M, Krygowska-Wajs A, Wojcik S, Falkenberg G, Manka A, Lankosz M. Investigations of differences in iron oxidation state inside single neurons from substantia nigra of Parkinson’s disease and control patients using the micro-XANES technique. J Biol Inorg Chem. 2007;12(2): 204-211.  https://doi.org/10.1007/s00775-006-0179-5
  30. Morawski M, Meinecke C, Reinert T, Dorffel AC, Riederer P, Arendt T, Butz T. Determination of trace elements in the human substantia nigra. Nucl Instrum Methods Phys Res Sect B. 2005;231(1-4):224-228.  https://doi.org/10.1016/j.nimb.2005.01.061
  31. Hare DJ, Cardoso BR, Raven EP, Double KL, Finkelstein DI, Szymlek-Gay EA, Biggs BA. Excessive early-life dietary exposure: A potential source of elevated brain iron and a risk factor for Parkinson’s disease. NPJ Parkinson’s Dis. 2017;3:1.  https://doi.org/10.1038/s41531-016-0004-y
  32. Zucca FA, Giaveri G, Gallorini M, Albertini A, Toscani M, Pezzoli G, Lucius R, Wilms H, Sulzer D, Ito S, Wakamatsu K, Zecca L. The neuromelanin of human substantia nigra: physiological and pathogenic aspects. Pigment Cell Res. 2004;17(6):610-617.  https://doi.org/10.1111/j.1600-0749.2004.00201.x
  33. Gerlach M, Double KL, Ben-Shachar D, Zecca L, Youdim MB, Riederer P. Neuromelanin and its interaction with iron as a potential risk factor for dopaminergic neurodegeneration underlying Parkinson’s disease. Neurotox Res. 2003;5:35-44.  https://doi.org/10.1007/bf03033371
  34. Sian-Helsmann J, Mandel S, Youdim MB, Riederer P. The relevance of iron in the pathogenesis of Parkinson’s disease. J Neurochem. 2011;118(6):939-957.  https://doi.org/10.1111/j.1471-4159.2010.07132.x
  35. Faucheux BA, Martin ME, Beaumont C, Hauw JJ, Agid Y, Hirsch EC. Neuromelanin associated redox-active iron is increased in the substantia nigra of patients with Parkinson’s disease. J Neurochem. 2003;86(5):1142-1148. https://doi.org/10.1046/j.1471-4159.2003.01923.x
  36. Voronkov DN, Khudoerkov RM, Dikalova YV, Sheloukhova LI. Quantitative evaluation of changes in the striatal astrocyte axons in simulated parkinsonism. Bulletin of Experimental Biology and Medicine/Byulleten’ eksperimental’noi biologii i medtsiny. 2015;160(10):513-518. (In Russ.). https://doi.org/10.1007/s10517-016-3208-6
  37. Dickson DW. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb Perspect Med. 2012;2(8). https://doi.org/0.1101/cshperspect.a009258
  38. Petrosyan TR, Gevorkyan OV, Chavus hyan VA, Meliksetyan IB, Hovsepyan AS, Manvelyan LR. Effects of bacterial melanin on motor recovery and regeneration after unilateral destruction of substantia nigra pars compacta in rats. Neuropeptides. 2014;48(1):37-46.  https://doi.org/10.1016/j.npep.2013.10.001
  39. Madhavi T, ed. Inflammation in Parkinson’s disease. Scientific and clinical aspects. Springer; 2014. https://doi.org/10.1007/978-3-319-08046-8
  40. Deas E, Cremades N, Angelova PR, Ludtmann MHR, Yao Z, Chen S, Horrocks MH, Banushi B, Little D, Devine MJ, Gissen P, Klenerman D, Dobson CM, Wood NW, Gandhi S, Abramov AY. Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s disease. Antioxid Redox Signal. 2015;24(7):376-91.  https://doi.org/10.1089/ars.2015.6343
  41. Walker DG, Lue LF, Adler CH, Shill H, Caviness J, Sabbagh M, Akiyama H, Serrano G, Sue L, Beach T. Changes in properties of serine 129 phosphorylated α-synuclein with progression of Lewy-type histopathology in human brains. Exp Neurol. 2013;240:190-204.  https://doi.org/10.1016/j.expneurol.2012.11.020
  42. Baksi S, Tripathi AK, Singh N. Alpha‐synuclein modulates retinal iron homeostasis by facilitating the uptake of transferrin‐bound iron: Implications for visual manifestations of Parkinson’s disease. Free Rad Biol Med. 2016;97:292-306.  https://doi.org/10.1016/j.freeradbiomed.2016.06.025
  43. Hirsch EC. Iron transport in Parkinson’s disease. Parkinsonism Relat Disord. 2009;15(3):209-211.  https://doi.org/10.1016/S1353-8020(09)70816-8
  44. Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick LM, Nuňez MT, Garrick MD, Raisman-Vozari R, Hirsch EC. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci USA. 2008;105(47):18578-18583. https://doi.org/10.1073/pnas.08043 73105
  45. Yan Y, Wang C. Aβ42 is more rigid than Aβ40 at the C terminus: implications for Aβ aggregation and toxicity. J Mol Biol. 2006; 364(5):853-862.  https://doi.org/10.1016/j.jmb.2006.09.046
  46. Dudeffant C, Vandesquille M, Herbert K, Garin CM, Alves S, Blanchard V, Comoy EE, Petit F, Dhenain M. Contrast-enhanced MR microscopy of amyloid plaques in five mouse models of amyloidosis and in human Alzheimer’s disease brains. Sci Rep. 2017; 7:4955. https://doi.org/10.1038/s41598-017-05285-1
  47. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science. 2002;297(5580):353-356.  https://doi.org/10.1126/science.1072994
  48. House MJ, St Pierre TG, Foster JK, Martins RN, Clarnette R. Quantitative MR imaging R2 relaxometry in elderly participants reporting memory loss. AJNR Am J Neuroradiol. 2006;27(2):430-439.  https://doi.org/10.1016/j.jalz.2006.05.1127
  49. Van Duijn S, Nabuurs RJA, van Duinen SG, Natté R. Comparison of histological techniques to visualize iron in paraffin-embedded brain tissue of patients with Alzheimer’s disease. J Histochem Cytochem. 2013;61(11):785-792.  https://doi.org/10.1369/0022155413501325
  50. Schrag M, Mueller C, Oyoyo U, Smith MA, Kirsch WM. Iron, zinc and copper in the Alzheimer’s disease brain: a quantitative meta-analysis. Some insight on the influence of citation bias on scientific opinion. Prog Neurobiol. 2011;94(3):296-306.  https://doi.org/10.1016/j.pneurobio.2011.05.001
  51. Bartzokis G, Sultzer D, Cummings J, Holt LE, Hance DB, Henderson VW, Mintz J. In vivo evaluation of brain iron in Alzheimer disease using magnetic resonance imaging. Arch Gen Psychiatry. 2000;57(1):47-53.  https://doi.org/10.1001/archpsyc.57.1.47
  52. Leskovjan AC, Kretlow A, Lanzirotti A, Barrea R, Vogt S, Miller LM. Increased brain iron coincides with early plaque formation in a mouse model of Alzheimer’s disease. Neuroimage. 2011;55(1):32-38.  https://doi.org/10.1016/j.neuroimage.2010.11.073
  53. Smith MA, Zhu X, Tabaton M. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J Alzheimers Dis. 2010;19(1):363-372.  https://doi.org/10.3233/JAD-2010-1239
  54. Musiek ES, Holtzman DM. Three dimensions of the amyloid hypothesis: time, space and «wingmen». Nat Neurosci. 2015;18(6):800-806.  https://doi.org/10.1038/nn.4018

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.