Послеоперационные когнитивные расстройства: патогенез, методы профилактики и лечения

Авторы:
  • М. В. Зозуля
    ФГБОУ ВПО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, 191015, Санкт-Петербург, Россия
  • А. И. Ленькин
    ФГБОУ ВПО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, 191015, Санкт-Петербург, Россия
  • И. С. Курапеев
    ФГБОУ ВПО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, 191015, Санкт-Петербург, Россия
  • К. М. Лебединский
    ФГБОУ ВПО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, 191015, Санкт-Петербург, Россия
Журнал: Анестезиология и реаниматология. 2019;(3): 25-33
Просмотрено: 649 Скачано: 5
В обзоре приведены определения понятий послеоперационного делирия и послеоперационной когнитивной дисфункции, представлены основные факторы риска развития этих осложнений с более подробным описанием влияния анестетиков на когнитивную функцию, а также современные теории патогенеза, обоснованные в экспериментальных моделях на животных и in vitro. Обсуждены фармакологические подходы к профилактике и лечению послеоперационных когнитивных нарушений.
Ключевые слова:
  • послеоперационный делирий
  • послеоперационная когнитивная дисфункция
  • патогенез
  • факторы риска
  • лечение

КАК ЦИТИРОВАТЬ:

Зозуля М.В., Ленькин А.И., Курапеев И.С., Лебединский К.М. Послеоперационные когнитивные расстройства: патогенез, методы профилактики и лечения. Анестезиология и реаниматология. 2019;(3):25-33. https://doi.org/10.17116/anaesthesiology201903125

Список литературы:

  1. Evered LA, Silbert BS. Postoperative cognitive dysfunction and noncardiac surgery. Anesthesia and Analgesia. 2018;127(2):496-505. doi: 10.1213/ANE.0000000000003514
  2. Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, Speroff T, Gautam S, Bernard GR, Inouye SK. Evaluation of delirium in critically ill patients: validation of the confusion assessment method for the intensive care unit (CAM-ICU). Critical Care Medicine. 2001;29(7):1370-1379.
  3. Aldecoa C, Bettelli G, Bilotta F, Sanders RD, Audisio R, Borozdina A, Cherubini A, Jones C, Kehlet H, MacLullich A, Radtke F, Riese F, Slooter AJ, Veyckemans F, Kramer S, Neuner B, Weiss B, Spies CD. European Society of Anaesthesiology evidence-based and consensus-based guideline on postoperative delirium. European Journal of Anaesthesiology. 2017;34(4):192-214. doi: 10.1097/EJA.0000000000000594
  4. Monk TG, Weldon BC, Garvan CW, Dede DE, van der Aa MT, Heilman KM, Gravenstein JS. Predictors of cognitive dysfunction after major noncardiac surgery. Anesthesiology. 2008;108(1):18-30.
  5. Rasmussen LS, Johnson T, Kuipers HM, Kristensen D, Siersma VD, Vila P, Jolles J, Papaioannou A, Abildstrom H, Silverstein JH, Bonal JA, Raeder J, Nielsen IK, Korttila K, Munoz L, Dodds C, Hanning CD, Moller JT; ISPOCD2 (International Study of Postoperative Cognitive Dysfunction) Investigators. Does anesthesia cause postoperative cognitive dysfunction? A randomized study of regional versus general anesthesia in 438 elderly patients. Acta Anaesthesiologica Scandinavica. 2003;47(3):260-266.
  6. Овезов А.М., Пантелеева М.В., Князев А.В., Луговой А.В., Брагина С.В. Когнитивная дисфункция и общая анестезия: от патогенеза к профилактике и коррекции. Неврология, нейропсихиатрия, психосоматика. 2016;8(3):101-105.
  7. Evered L, Silbert B, Knopman DS, Scott DA, DeKosky ST, Rasmussen LS, Oh ES, Crosby G, Berger M, Eckenhoff RG; The Nomenclature Consensus Working Group. Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. British Journal of Anaesthesia. 2018;121 (5):e1005-e1012. doi: 10.1016/j.bja.2017.11.087
  8. Patel N, Minhas JS, Chung EM. Risk Factors Associated with Cognitive Decline after Cardiac Surgery: A Systematic Review. Hindawi Publishing Corporation. Cardiovascular Psychiatry and Neurology. 2015;Article ID 370612;12.
  9. Moller JT, Cluitmans P, Rasmussen LS, Houx P, Rasmussen H, Canet J, Rabbitt P, Jolles J, Larsen K, Hanning CD, Langeron O, Johnson T, Lauven PM, Kristensen PA, Biedler A, van Beem H, Fraidakis O, Silverstein JH, Beneken JE, Gravenstein JS. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction. Lancet. 1998;351(9106):857-861.
  10. Lin D, Zuo Z. Isoflurane induces hippocampal cell injury and cognitive impairments in adult rats. Neuropharmacology. 2011;61(8):1354-1359.
  11. Zhang S, Hu X, Guan W, Luan L, Li B, Tang Q, Fan H. Isoflurane anesthesia promotes cognitive impairment by inducing expression of β-amyloid protein-related factors in the hippocampus of aged rats. PLoS One. 2017;12(4):e0175654.
  12. Dos Santos Picanco LC, Ozela PF, de Fatima de Brito Brito M, Pinheiro AA, Padilha EC, Braga FS, de Paula da Silva CHT, Dos Santos CBR, Rosa JMC, da Silva Hage-Melim LI. Alzheimer’s Disease: A Review from the Pathophysiology to Diagnosis, New Perspectives for Pharmacological Treatment. Current Medicinal Chemistry. 2018;25:3141-3159. doi: 10.2174/0929867323666161213101126
  13. Reisuke HT, Toshitaka N, Gouras GK. Plaque formation and the intraneuronal accumulation of β-amyloid in Alzheimer’s disease. Pathology International. 2017;67(4):185-193. doi: 10.1111/pin.12520
  14. Kong F-J, Ma L-L, Zhang H-H, Zhou J-Q. Alpha 7 nicotinic acetylcholine receptor agonist GTS-21 mitigates isoflurane-induced cognitive impairment in aged rats. The Journal of Surgical Research. 2015;194:255-261.
  15. Eberspächer E, Eckel B, Engelhard K, Müller K, Hoffman WE, Blobner M, Werner C. Effects of sevoflurane on cognitive deficit, motor function, and histopathology after cerebral ischemia in rats. Acta Anaesthesiologica Scandinavica. 2009;53(6):774-782. doi: 10.1111/j.1399-6576.2009.01954.x
  16. Feng J, Zuo Z. Isoflurane preconditioning increases endothelial cell tolerance to in-vitro simulated ischaemia. Journal of Pharmacy and Pharmacology. 2011;63:106-110.
  17. Wei H, Inan S. Dual effects of neuroprotection and neurotoxicity by general anesthetics: role of intracellular calcium homeostasis. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2013;47:156-161.
  18. Cárdenas C, Miller RA, Smith I, Bui T, Molgó J, Müller M, Vais H, Cheung KH, Yang J, Parker I, Thompson CB, Birnbaum MJ, Hallows KR, Foskett JK. Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell. 2010;142:270-283. doi: 10.1016/j.cell.2010.06.007
  19. Hshieh TT, Fong TG, Marcantonio ER, Inouye SK. Cholinergic deficiency hypothesis in delirium: a synthesis of current evidence. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 2008;63(7):764-772.
  20. Cerejeira J, Nogueira V, Luís P, Vaz-Serra A, Mukaetova-Ladinska EB. The cholinergic system and inflammation: common pathways in delirium pathophysiology. Journal of the American Geriatrics Society. 2012;60(4):669-675. doi: 10.1111/j.1532-5415.2011.03883.x
  21. Bartsch T, Wulff P. The hippocampus in aging and disease: from plasticity to vulnerability. Neuroscience. 2015;309:1-16. doi: 10.1016/j.neuroscience.2015.07.084
  22. Liu X, Yu Y, Zhu S. Inflammatory markers in postoperative delirium (POD) and cognitive dysfunction (POCD): a metaanalysis of observational studies. PLoS One. 2018;13(4):e0195659.
  23. Yang S, Gu C, Mandeville ET, Dong Y, Esposito E, Zhang Y, Yang G, Shen Y, Fu X, Lo EH, Xie Z. Anesthesia and surgery impair Blood-brain barrier and cognitive function in mice. Frontiers in Immunology. 2017;8:902. doi: 10.3389/fimmu.2017.00902 Kaur C, Ling EA. The circumventricular organs. Histology and Histopathology. 2017;32(9):879-892.
  24. An LN, Yue Y, Guo WZ, Miao YL, Mi WD, Zhang H, Lei ZL, Han SJ, Dong L. Surgical trauma induces iron accumulation and oxidative stress in a rodent model of postoperative cognitive dysfunction. Biological Trace Element Research. 2013;151(2):277-283. doi: 10.1007/s12011-012-9564-9
  25. Pan K, Li X, Chen Н, Zhu D, Li Y, Tao G, Zuo Z. Deferoxamine pre-treatment protects against postoperative cognitive dysfunction of aged rats by depressing microglial activation via ameliorating iron accumulation in hippocampus. Neuropharmacology. 2016;111:180-194.
  26. Margaritis M, Channon KM, Antoniades C. Statins as Regulators of Redox State in the Vascular Endothelium: Beyond Lipid Lowering. Antioxidants & Redox Signaling. 2014;20(8):1198-1215.
  27. Pamphlett R, Bishop DP, Kum Jew S, Doble PA. Age-related accumulation of toxic metals in the human locus ceruleus. PLoS One. 2018;13(9):e0203627. doi: 10.1371/journal.pone.0203627
  28. Schneider SA. Neurodegeneration with Brain Iron Accumulation. Current Neurology and Neuroscience reports. 2016;16(1):9. doi: 10.1007/s11910-015-0608-3
  29. Benarroch EE. Acetylcholine in the cerebral cortex: effects and clinical implications. Neurology. 2010;75:659-665.
  30. Fox C, Smith T, Maidment I, Chan WY, Bua N, Myint PK, Boustani M, Kwok CS, Glover M, Koopmans I, Campbell N. Effect of medications with anti-cholinergic properties on cognitive function, delirium, physical function and mortality: a systematic review. Age and Ageing. 2014;43(5):604-615. doi: 10.1093/ageing/afu096
  31. Данилов М.С., Лебединский К.М. Центральный антихолинергический... синдром? Анестезиология и реаниматология. 2015;60(6):75-78.
  32. Barclay LL, Gibson GE, Blass JP. Impairment of behavior and acetylcholine metabolism in THI amine deficiency. Journal of Pharmacology and Experimental Therapeutics. 1981;217:537-543.
  33. Andrew H, Buckley NA. Pharmacological management of anticholinergic delirium: theory, evidence and practice. British Journal of Clinical Pharmacology. 2016;81(3):516-524.
  34. Gamberini M, Bolliger D, Lurati Buse GA, Burkhart CS, Grapow M, Gagneux A, Filipovic M, Seeberger MD, Pargger H, Siegemund M, Carrel T, Seiler WO, Berres M, Strebel SP, Monsch AU, Steiner LA. Rivastigmine for the prevention of postoperative delirium in elderly patients undergoing elective cardiac surgery–a randomized controlled trial. Critical Care Medicine. 2009;37(5):1762-1768. doi: 10.1097/CCM.0b013e31819da780
  35. Terrando N, Eriksson LI, Ryu JK, Yang T, Monaco C, Feldmann M, Jonsson Fagerlund M, Charo IF, Akassoglou K, Maze M. Resolving postoperative neuroinflammation and cognitive decline. Annals of Neurology. 2011;70(6):986-995. doi: 10.1002/ana.22664
  36. Lawrence T. The nuclear factor NF-kB pathway in inflammation. Cold Spring Harbor Perspectives in Biology. 2009;1(6):a001651.
  37. Zila I, Mokra D, Kopincova J, Kolomaznik M, Javorka M, Calkovska A. Vagal-immune interactions involved in cholinergic anti-inflammatory pathway. Physiological Research. 2017;66(Suppl. 2):139-145.
  38. Князев А.В., Пантелеева М.В. Неврологические осложнения у детей с врожденными пороками сердца в предоперационном, интраоперационном и постоперационном периодах. Альманах клинической медицины. 2001;4:254-259.
  39. Лобов М.А., Болевич С.Б., Гринько А.Н., Куприн А.В., Машков А.Е., Пантелеева М.В., Князев А.В. Церебральные и метаболические нарушения при оперативных вмешательствах под общим обезболиванием у детей. Альманах клинической медицины. 2006;8:170-172.
  40. Овезов А.М., Князев А.В., Пантелеева М.В., Лобов М.А., Борисова М.Н., Луговой А.В. Послеоперационная энцефалопатия: патофизиологические и морфологические основы профилактики при общем обезболивании. Неврология, нейропсихиатрия, психосоматика. 2015;7(2):61-66.
  41. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. 3-е изд., перераб. и доп. М.: Медицина; 1998.
  42. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto AM Jr, Kastelein JJ. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. New England Journal of Medicine. 2008;359(21):2195-2207.
  43. Wassmann S, Laufs U. HMGCoA reductase inhibitors improve endothelial dysfunctionin normocholesterolemic hypertension via reduced production of reactive oxygen species. Hypertension. 2001;37:1450-1457.
  44. Heyer EJ, Mergeche JL, Wang S, Gaudet JG, Connolly ES. Impact of cognitive dysfunction on survival in patients with and without statin use following carotid endarterectomy. Neurosurgery. 2015;77(6):880-887.
  45. Liu W, Zhao Y, Zhang X, Ji J. Simvastatin ameliorates cognitive impairments via inhibition of oxidative stress induced apoptosis of hippocampal cells through the ERK/AKT signaling pathway in a rat model of senile dementia. Molecular Medicine Reports. 2018;17(1):1885-1892.
  46. Husain I, Akhtar M, Vohora D. Rosuvastatin attenuates high-salt and cholesterol diet induced neuroinflammation and cognitive impairment via preventing nuclear factor KappaB Pathway. Neurochemical Research. 2017;42(8):2404-2416.
  47. Domino EF. History and pharmacology of PCP and PCP-related analogs. Journal of Psychedelic Drugs. 1980;12(3-4):223-227.
  48. Visser E, Schug SA. The role of ketamine in pain management. Biomedicine & Pharmacotherapy. 2006;60:341-348.
  49. Bell JD. In Vogue: Ketamine for neuroprotection in acute neurologic injury. Anesthesia and Analgesia. 2017;124(4):1237-1243.
  50. Shaked G, Czeiger D, Dukhno O, Levy I, Artru AA, Shapira Y, Douvdevani A. Ketamine improves survival and suppresses IL-6 and TNF alpha production in a model of Gram-negative bacterial sepsis in rats. Resuscitation. 2004;62(2):237-242.
  51. Chang Y, Lee JJ, Hsieh CY, Hsiao G, Chou DS, Sheu JR. Inhibitory effects of ketamine on lipopolysaccharide-induced microglial activation. Mediators of Inflammation. 2009;2009:705379. doi: 10.1155/2009/705379
  52. Кузник Б.И., Хавинсон В.Х., Линькова Н.С., Салль Т.С. Алармин1 (hmgb1) и возрастная патология. Эпигенетические механизмы регуляции. Успехи физиологических наук. 2017;48(4):40-55.
  53. Takahata R, Ono S, Tsujimoto H, Hiraki S, Kimura A, Kinoshita M, Miyazaki H, Saitoh D, Hase K. Postoperative serum concentrations of high mobility group box chromosomal protein-1 correlates to the duration of SIRS and pulmonary dysfunction following gastrointestinal surgery. The Journal of Surgical Research. 2011;170(1):135-140. doi: 10.1016/j.jss.2011.04.040
  54. Li K, Yang J, Han X. Ketamine attenuates sepsis-induced acute lung injury via regulation of HMGB1-RAGE pathways. International Immunopharmacology. 2016;34:114-128.
  55. Arias HR. Role of local anesthetics on both cholinergic and serotonergic ionotropic receptors. Neuroscience and Biobehavioral Reviews. 1999;23(6):817-843.
  56. Beaussier M, Delbos A, Maurice-Szamburski A, Ecoffey C, Mercadal L. Perioperative use of intravenous Lidocaine. Drugs. 2018;78(12):1229-1246. doi: 10.1007/s40265-018-0955-x
  57. Kuo CP, Jao SW, Chen KM, Wong CS, Yeh CC, Sheen MJ, Wu CT. Comparison of the effects of thoracic epidural analgesia and I.V. infusion with lidocaine on cytokine response, postoperative pain and bowel function in patients undergoing coloniс surgery. British Journal of Anaesthesia. 2006;97(5):640-646.
  58. Hahnenkamp K, Durieux ME, Hahnenkamp A, Schauerte SK, Hoenemann CW, Vegh V, Theilmeier G, Hollmann MW. Local anaesthetics inhibit signalling of human NMDA receptors recombinantly expressed in Xenopus laevis oocytes: role of protein kinase C. British Journal of Anaesthesia. 2006;96(1):77-87.
  59. Yuan T, Li Z, Li X, Yu G, Wang N, Yang X. Lidocaine attenuates lipopolysaccharide-induced inflammatory responses in microglia. Surgical Research. 2014;192(1):150-162.
  60. Habibi MR, Habibi V, Habibi A, Soleimani A. Lidocaine dose-response effect on postoperative cognitive deficit: metaanalysis and meta-regression. Expert Review of Clinical Pharmacology. 2018;11(4):361-371. doi: 10.1080/17512433.2018.1425614
  61. Потиевская В.И., Гридчик И.Е., Грицан А.И., Еременко А.А., Заболотских И.Б., Козлов И.А., Лебединский К.М., Левит А.Л., Мазурок В.А., Молчанов И.В., Николаенко Э.М., Овечкин А.М. Седация пациентов в отделениях реанимации и интенсивной терапии. Анестезиология и реаниматология. 2018;63(2):165-175.
  62. Keating GM, Sheritan MH, Williamson KA. Dexmedetomidin: a guide to its use for sedation in the US. Clinical Drug Investigation. 2012;32(8):561-567.
  63. Козлов И.А. Современные подходы к седации в отделениях реанимации и интенсивной терапии. Медицинский алфавит. Неотложная медицина. 2013;1:22-31.
  64. Jaakola ML, Salonen M, Lehtinen R, Scheinin H. The analgesic action of dexmedetomidine — a novel alpha2-adrenoceptor agonist in healthy volunteers. Pain. 1991;46(3):281-285.
  65. Maldonado JR, Wysong A, van der Starre PJ, Block T, Miller C, Reitz BA. Dexmedetomidine and the reduction of postoperative delirium after cardiac surgery. Psychosomatics. 2009;50(3):206-217.
  66. Shehabi Y, Grant P, Wolfenden H, Hammond N, Bass F, Campbell M, Chen J. Prevalence of delirium with dexmedetomidine compared with morphine based therapy after cardiac surgery: a randomized controlled trial (DEXmedetomidine COmpared to Morphine-DEXCOM Study). Anesthesiology. 2009;111(5):1075-1084. doi: 10.1097/ALN.0b013e3181b6a783
  67. Li Y, He R, Chen S, Qu Y. Effect of dexmedetomidine on early postoperative cognitive dysfunction and perioperative inflammation in elderly patients undergoing laparoscopic cholecystectomy. Experimental and Therapeutic Medicine. 2015;10(5):1635-1642.
  68. Zhu YJ, Peng K, Meng XW, Ji FH. Attenuation of neuroinflammation by dexmedetomidine is associated with activation of a cholinergic anti-inflammatory pathway in a rat tibial fracture model. Brain Research. 2016;1644:1-8. doi: 10.1016/j.brainres.2016.04.074