The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Davydov V.V.

Altai State Medical University

Safonov V.P.

Altai State Medical University

Postoperative pain as a cause of hypertension progression in women with preeclampsia after cesarean section

Authors:

Davydov V.V., Safonov V.P.

More about the authors

Journal: Russian Journal of Pain. 2025;23(2): 83‑90

Read: 750 times


To cite this article:

Davydov VV, Safonov VP. Postoperative pain as a cause of hypertension progression in women with preeclampsia after cesarean section. Russian Journal of Pain. 2025;23(2):83‑90. (In Russ.)
https://doi.org/10.17116/pain20252302183

Recommended articles:
The significance of exogenous nitrate and nitrite of plant origin for vascular health. Russian Journal of Preventive Medi­cine. 2024;(11):141-146
Cuffless methods of blood pressure measurements. Review of modern technologies. Russian Journal of Preventive Medi­cine. 2024;(12):156-162
Septic complications after abdo­minal deli­very (literature review). Russian Journal of Human Reproduction. 2024;(6):108-117
Modern aspe­cts of chro­nic cere­bral ischemia pathogenetic therapy. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):106-113

References:

  1. Argüello E, Bermeo L, Castillo J. Exploring the abilities of peripheral autonomic parameters to describe pain: another dead end? Pain Physician. 2022;25(1):E1-E14. 
  2. Ivascu R, Torsin LI, Hostiuc L, Nitipir C, Corneci D, Dutu M. The surgical stress response and anesthesia: a narrative review. J Clin Med. 2024;13(10):3017. https://doi.org/10.3390/jcm13103017
  3. Buffolo F, Tetti M, Mulatero P, Monticone S. Aldosterone as a mediator of cardiovascular damage hypertension. Hypertension. 2022;79(9):1899-1911. https://doi.org/10.1161/hypertensionaha.122.17964
  4. Preeclampsia. Eclampsia. Edema, proteinuria and hypertensive disorders during pregnancy, childbirth and the postpartum period. Clinical guidelines. Ministerstvo zdravookhraneniya Rossijskoj Federatsii, Rossijskoe obshchestvo akusherov-ginekologov, OOO «Assotsiatsiya anesteziologov-reanimatologov (AAR)», Assotsiatsiya akusherskikh anesteziologov-reanimatologov. M. 2021:79. (In Russ.). Accessed August 15, 2024. https://cr.minzdrav.gov.ru/schema/637_1
  5. Sinkey RG, Battarbee AN, Bello NA, Ives CW, Oparil S, Tita ATN. Prevention, diagnosis, and management of hypertensive disorders of pregnancy: a comparison of international guidelines. Curr Hypertens Rep. 2020;22(9):66.  https://doi.org/10.1007/s11906-020-01082-w
  6. Melchiorre K, Giorgione V, Thilaganathan B. The placenta and preeclampsia: villain or victim? Am J Obstet Gynecol. 2022;226(2):954-962.  https://doi.org/10.1016/j.ajog.2020.10.024
  7. Yang C, Baker PN, Granger JP, Davidge ST, Tong C. Long-Term Impacts of Preeclampsia on the Cardiovascular System of Mother and Offspring. Hypertension. 2023;80(9):1821-1833. https://doi.org/10.1161/hypertensionaha.123.21061
  8. Vygivska LA, Derevianchenko NV, Rudenko LA, Chebotenko OR. Preeclampsia and its effect on the state of cardiovascular system in women. Wiad Lek. 2023;76(8):1826-1830.
  9. Hauspurg A, Jeyabalan A. Postpartum preeclampsia or eclampsia: defining its place and management among the hypertensive disorders of pregnancy. Am J Obstet Gynecol. 2022;226(2):1211-1221. https://doi.org/10.1016/j.ajog.2020.10.027
  10. Ackerman-Banks CM, Lipkind HS, Palmsten K, Ahrens KA. Association between hypertensive disorders of pregnancy and cardiovascular diseases within 24 months after delivery. Am J Obstet Gynecol. 2023;229(1):65. e1-65.e15.  https://doi.org/10.1016/j.ajog.2023.04.006
  11. Kharazmi F, Hosseini-Dastgerdi H, Pourshanazari AA, Nematbakhsh M. The denervation or activation of renal sympathetic nerve and renal blood flow. J Res Med Sci. 2023;28(1):76.  https://doi.org/10.4103/jrms.jrms_216_23
  12. Deja A, Skrzypczyk P, Nowak M, Wrońska M, Szyszka M, Ofiara A, Lesiak-Kosmatka J, Stelmaszczyk-Emmel A, Pańczyk-Tomaszewska M. Evaluation of active renin concentration in a cohort of adolescents with primary hypertension. Int J Environ Res Public Health. 2022;19(10):5960. https://doi.org/10.3390/ijerph19105960
  13. Takimoto-Ohnishi E., Murakami K. Renin-angiotensin system research: from molecules to the whole body. J Physiol Sci. 2019;69:581-587.  https://doi.org/10.1007/s12576-019-00679-4
  14. Simões ESAC, Lanza K, Palmeira VA, Costa LB, Flynn JT. 2020 update on the renin-angiotensin-aldosterone system in pediatric kidney disease and its interactions with coronavirus. Pediatr Nephrol. 2021;36:1407-1426. https://doi.org/10.1007/s00467-020-04759-1
  15. Harrison DG, Coffman TM, Wilcox CS. Pathophysiology of Hypertension: The Mosaic Theory and Beyond. Circ Res. 2021 Apr 2;128(7):847-863. Epub 2021 Apr 01. PMID: 33793328; PMCID: PMC8023760. https://doi.org/10.1161/CIRCRESAHA.121.318082
  16. Gao X, Yamazaki Y, Tezuka Y, Omata K, Ono Y, Morimoto R, Nakamura Y, Suzuki T, Satoh F, Sasano H. Pathology of Aldosterone Biosynthesis and its Action. Tohoku J Exp Med. 2021 May;254(1):1-15. PMID: 34011803. https://doi.org/10.1620/tjem.254.1
  17. De Luca MR, Sorriento D, Massa D, Valente V, De Luise F, Barbato E, Morisco C. Effects of inhibition of the renin-angiotensin system on hypertension-induced target organ damage: clinical and experimental evidence. Monaldi Arch Chest Dis. 2021 Feb 10;91(1). PMID: 33567818. https://doi.org/10.4081/monaldi.2021.1570
  18. DeLalio LJ, Sved AF, Stocker SD. Sympathetic nervous system contributions to hypertension: updates and therapeutic relevance. Can J Cardiol. 2020;36(5):712-720.  https://doi.org/10.1016/j.cjca.2020.03.003
  19. Seravalle G, Grassi G. Sympathetic nervous system and hypertension: new evidences. Auton Neurosci. 2022;238:102954. https://doi.org/10.1016/j.autneu.2022.102954
  20. Feyz L, van den Berg S, Zietse R, Kardys I, Versmissen J, Daemen J. Effect of renal denervation on catecholamines and the renin-angiotensin-aldosterone system. J Renin Angiotensin Aldosterone Syst. 2020;21(3):1470320320943095. https://doi.org/10.1177/1470320320943095
  21. Motiejunaite J, Amar L, Vidal-Petiot E. Adrenergic receptors and cardiovascular effects of catecholamines. Ann Endocrinol (Paris). 2021;82(3-4):193-197.  https://doi.org/10.1016/j.ando.2020.03.012
  22. Wang Y, Anesi J, Maier MC, Myers MA, Oqueli E, Sobey CG, Drummond GR, Denton KM. Sympathetic nervous system and atherosclerosis. Int J Mol Sci. 2023;24(17):13132. https://doi.org/10.3390/ijms241713132
  23. Gubbi S, Nazari MA, Taieb D, Klubo-Gwiezdzinska J, Pacak K. Catecholamine physiology and its implications in patients with COVID-19. Lancet Diabetes Endocrinol. 2020;8(12):978-986.  https://doi.org/10.1016/s2213-8587(20)30342-9
  24. Grogan A, Lucero EY, Jiang H, Rockman HA. Pathophysiology and pharmacology of G protein-coupled receptors in the heart. Cardiovasc Res. 2023;119(5):1117-1129. https://doi.org/10.1093/cvr/cvac171
  25. Nazari MA, Rosenblum JS, Haigney MC, Rosing DR, Pacak K. Pathophysiology and acute management of tachyarrhythmias in pheochromocytoma: JACC review topic of the week. J Am Coll Cardiol. 2020;76(4):451-464.  https://doi.org/10.1016/j.jacc.2020.04.080
  26. Miller AJ, Arnold AC. The renin-angiotensin system and cardiovascular autonomic control in aging. Peptides. 2022;150:170733. https://doi.org/10.1016/j.peptides.2021.170733
  27. Jena MK, Sharma NR, Petitt M, Maulik D, Nayak NR. Pathogenesis of preeclampsia and therapeutic approaches targeting the placenta. Biomolecules. 2020;10(6):953.  https://doi.org/10.3390/biom10060953
  28. Garrido-Gómez T, Castillo-Marco N, Cordero T, Simón C. Decidualization resistance in the origin of preeclampsia. Am J Obstet Gynecol. 2022;226(2S):886-894.  https://doi.org/10.1016/j.ajog.2020.09.039
  29. Opichka MA, Rappelt MW, Gutterman DD, Grobe JL, McIntosh JJ. Vascular Dysfunction in Preeclampsia. Cells. 2021 Nov 06;10(11):3055. PMID: 34831277; PMCID: PMC8616535. https://doi.org/10.3390/cells10113055
  30. Jung E, Romero R, Yeo L, Gomez-Lopez N, Chaemsaithong P, Jaovisidha A, Gotsch F, Erez O. The etiology of preeclampsia. Am J Obstet Gynecol. 2022;226(2 Suppl):S844-S866.
  31. Bakrania BA, Spradley FT, Drummond HA, LaMarca B, Ryan MJ, Granger JP. Preeclampsia: linking placental ischemia with maternal endothelial and vascular dysfunction. Compr Physiol. 2020;11(1):1315-1349. https://doi.org/10.1002/cphy.c200008
  32. Thilaganathan B, Kalafat E. Cardiovascular system in preeclampsia and beyond. Hypertension. 2019;73(3):522-531.  https://doi.org/10.1161/hypertensionaha.118.11191
  33. Yagel S, Cohen SM, Admati I, Skarbianskis N, Solt I, Zeisel A, Beharier O, Goldman-Wohl D. Expert review: preeclampsia Type I and Type II. Am J Obstet Gynecol MFM. 2023;5(12):101203. https://doi.org/10.1016/j.ajogmf.2023.101203
  34. Dimitriadis E, Rolnik DL, Zhou W, Estrada-Gutierrez G, Koga K, Francisco RPV, Whitehead C, Hyett J, da Silva Costa F, Nicolaides K, Menkhorst E. Pre-eclampsia. Nat Rev Dis Primers. 2023;9(1):8.  https://doi.org/10.1038/s41572-023-00417-6
  35. Tenório MB, Ferreira RC, Moura FA, Bueno NB, de Oliveira ACM, Goulart MOF. Cross-talk between oxidative stress and inflammation in preeclampsia. Oxid Med Cell Longev. 2019;26:8238727. https://doi.org/10.1155/2019/8238727
  36. Michalczyk M, Celewicz A, Celewicz M, Woźniakowska-Gondek P, Rzepka R. The role of inflammation in the pathogenesis of preeclampsia. Mediators Inflamm. 2020;5:3864941. https://doi.org/10.1155/2020/3864941
  37. Gathiram P, Moodley J. The role of the renin-angiotensin-aldosterone system in preeclampsia: a review. Curr Hypertens Rep. 2020;22(89):1-11.  https://doi.org/10.1007/s11906-020-01098-2
  38. Leal CRV, Costa LB, Ferreira GC, Ferreira AM, Reis FM, Simões E Silva AC. Renin-angiotensin system in normal pregnancy and in preeclampsia: a comprehensive review. Pregnancy Hypertens. 2022;28:15-20.  https://doi.org/10.1016/j.preghy.2022.01.011
  39. Sun Y, Tan L, Neuman RI, Broekhuizen M, Schoenmakers S, Lu X, Danser AHJ. Megalin, proton pump inhibitors and the renin-angiotensin system in healthy and pre-eclamptic placentas. Int J Mol Sci. 2021;22(14):7407. https://doi.org/10.3390/ijms22147407
  40. Ives CW, Sinkey R, Rajapreyar I, Tita ATN, Oparil S. Preeclampsia-pathophysiology and clinical presentations: JACC state-of-the-art review. J Am Coll Cardiol. 2020;76(14):1690-1702. https://doi.org/10.1016/j.jacc.2020.08.014
  41. Quitterer U, AbdAlla S. Pathological AT1R-B2R protein aggregation and preeclampsia. Cells. 2021;10(10):2609. https://doi.org/10.3390/cells10102609
  42. Civieri G, Iop L, Tona F. Antibodies against angiotensin II Type 1 and endothelin 1 Type a receptors in cardiovascular pathologies. Int J Mol Sci. 2022;23(2):927.  https://doi.org/10.3390/ijms23020927
  43. rtemieva KA, Nizyaeva NV, Baev OR, Romanov AY, Khlestova GV, Boltovskaya MN, Shchegolev AI, Kakturskiy LV. Regulation of the Placental Renin-Angiotensin-Aldosterone System in Early- and Late-Onset Preeclampsia. Dokl Biochem Biophys. 2022 Dec;507(1):256-263. Epub 2022 Dec 29. PMID: 36580212; PMCID: PMC9928934. https://doi.org/10.1134/s1607672922060011
  44. Dines V, Suvakov S, Kattah A, Vermunt J, Narang K, Jayachandran M, Abou Hassan C, Norby AM, Garovic VD. Preeclampsia and the Kidney: Pathophysiology and Clinical Implications. Compr Physiol. 2023;13(1):4231-4267. https://doi.org/10.1002/cphy.c210051
  45. Greenwall KM, Brislane Á, Matenchuk BA, Sivak A, Davenport MH, Steinback CD. Muscle sympathetic nerve activity during pregnancy: a systematic review and meta-analysis. Physiol Rep. 2023;11(5):e15626. https://doi.org/10.14814/phy2.15626
  46. Samajdar SS, Sarkar S, Bhadra A, Mukherjee S, Saha D, Das A, Sen S, Tripathi SK, Pal J, Joshi SR. Sympathetic neurofunction testing in gestational hypertension and relationship with developing preeclampsia and eclampsia: real-world evidences from clinical pharmacology clinics. J Assoc Physicians India. 2024;72(3):47-50. 
  47. Spradley FT. Sympathetic nervous system control of vascular function and blood pressure during pregnancy and preeclampsia. J Hypertens. 2019; 37(3):476-487.  https://doi.org/10.1097/hjh.0000000000001901
  48. Reyes LM, Usselman CW, Khurana R, Chari RS, Stickland MK, Davidge ST, Julian CG, Steinback CD, Davenport MH. Preeclampsia is not associated with elevated muscle sympathetic reactivity. J Appl Physiol. 2021;130(1):139-148.  https://doi.org/10.1152/japplphysiol.00646.2020
  49. Phoswa WN. Dopamine in the pathophysiology of preeclampsia and gestational hypertension: Monoamine Oxidase (MAO) and Catechol-O-methyl Transferase (COMT) as possible mechanisms. Oxid Med Cell Longev. 2019; 2019:3546294. https://doi.org/10.1155/2019/3546294
  50. Yousif D, Bellos I, Penzlin AI, Hijazi MM, Illigens BM, Pinter A, Siepmann T. Autonomic dysfunction in preeclampsia: a systematic review. Front Neurol. 2019;10:816.  https://doi.org/10.3389/fneur.2019.00816
  51. Moors S, Staaks KJJ, Westerhuis MEMH, Dekker LRC, Verdurmen KMJ, Oei SG, van Laar JOEH. Heart rate variability in hypertensive pregnancy disorders: a systematic review. Pregnancy Hypertens. 2020;20:56-68.  https://doi.org/10.1016/j.preghy.2020.03.003
  52. Pichardo-Carmona EY, Reyes-Lagos JJ, Ceballos-Juárez RG, Ledesma-Ramírez CI, Mendieta-Zerón H, Peña-Castillo MÁ, Nsugbe E, Porta-García MÁ, Mina-Paz Y. Changes in the autonomic cardiorespiratory activity in parturient women with severe and moderate features of preeclampsia. Front Immunol. 2023;14:1190699. https://doi.org/10.3389/fimmu.2023.1190699
  53. Brooks VL, Fu Q, Shi Z, Heesch CM. Adaptations in autonomic nervous system regulation in normal and hypertensive pregnancy. Handb Clin Neurol. 2020;171:57-84.  https://doi.org/10.1016/b978-0-444-64239-4.00003-5
  54. Ceballos-Juárez RG, Pichardo-Carmona EY, Mendieta-Zerón H, Echeverría JC, Reyes-Lagos JJ. Multiscale asymmetry reveals changes in the maternal short-term heart rate dynamics of preeclamptic women during labor. Technol Health Care. 2023;31(1):95-101.  https://doi.org/10.3233/thc-220042
  55. Wang Z, Zhao G, Zibrila AI, Li Y, Liu J, Feng W. Acetylcholine ameliorated hypoxia-induced oxidative stress and apoptosis in trophoblast cells via p38 MAPK/NF-κB pathway. Mol Hum Reprod. 2021;27(8):gaab045. https://doi.org/10.1093/molehr/gaab045
  56. Jain Y, Lanjewar R, Lamture Y, Bawiskar D. Evaluation of different approaches for pain management in postoperative general surgery patients: a comprehensive review. Cureus. 2023;15(11):e48573. https://doi.org/10.7759/cureus.48573
  57. Hirose M, Okutani H, Hashimoto K, Ueki R, Shimode N, Kariya N, Takao Y, Tatara T. Intraoperative assessment of surgical stress response using nociception monitor under general anesthesia and postoperative complications: a narrative review. J Clin Med. 2022;11(20):6080. https://doi.org/10.3390/jcm11206080
  58. Zabolotskikh IB, Bautin AE, Grigoryev EV, Gritsan AI, Lebedinskii KM, Potievskaya VI, Rudnov VA, Subbotin VV, Khoronenko VE, Shadrin RV. Perioperative management of patients with hypertension. Guidelines. Annals of Critical Care. 2020;2:7-33. (In Russ.). https://doi.org/10.21320/1818-474x-2020-2-7-33
  59. Tobias JD, Naguib A, Simsic J, Krawczeski CD. Pharmacologic control of blood pressure in infants and children. Pediatr Cardiol. 2020;41(7):1301-1318. https://doi.org/10.1007/s00246-020-02448-2
  60. Arslan D, Ünal Çevik I. Interactions between the painful disorders and the autonomic nervous system. Agri. 2022;34(3):155-165.  https://doi.org/10.14744/agri.2021.43078
  61. Kolesnikov YuA. Peripheral nociceptive mechanisms — targets for local painkillers. Russian Journal of Pain. 2023;21(1):52-59. (In Russ.). https://doi.org/10.17116/pain20232101152
  62. Patel ABU, Weber V, Gourine AV, Ackland GL. The potential for autonomic neuromodulation to reduce perioperative complications and pain: a systematic review and meta-analysis. Br J Anaesth. 2022;128(1):135-149.  https://doi.org/10.1016/j.bja.2021.08.037
  63. Wegeberg AM, Sejersgaard-Jacobsen TH, Brock C, Drewes AM. Prediction of pain using electrocardiographic-derived autonomic measures: a systematic review. Eur J Pain. 2024;28(2):199-213.  https://doi.org/10.1002/ejp.2175
  64. Conic RRZ, Vasilopoulos T, Devulapally K, Przkora R, Dubin A, Sibille KT, Mickle AD. Hypertension and urologic chronic pelvic pain syndrome: an analysis of MAPP-I data. BMC Urol. 2024;24(1):21.  https://doi.org/10.1186/s12894-024-01407-w
  65. König S, Steinebrey N, Herrnberger M, Escolano-Lozano F, Schlereth T, Rebhorn C, Birklein F. Reduced serum protease activity in Complex Regional Pain Syndrome: the impact of angiotensin-converting enzyme and carboxypeptidases. J Pharm Biomed Anal. 2021;205:114307. https://doi.org/10.1016/j.jpba.2021.114307
  66. König S, Engl C, Bayer M, Escolano-Lozano F, Rittner H, Rebhorn C, Birklein F. Substance P serum degradation in complex regional pain syndrome — another piece of the puzzle? J Pain. 2022;23(3):501-507.  https://doi.org/10.1016/j.jpain.2021.10.005
  67. Shabanian S, Khazaie M, Ferns GA, Arjmand MH. Local renin-angiotensin system molecular mechanisms in intrauterine adhesions formation following gynecological operations, new strategy for novel treatment. J Obstet Gynaecol. 2022;42(6):1613-1618. https://doi.org/10.1080/01443615.2022.2036972
  68. Tavakkoli M, Aali S, Khaledifar B, Ferns GA, Khazaei M, Fekri K, Arjmand MH. The potential association between the risk of post-surgical adhesion and the activated local angiotensin II Type 1 Receptors: need for novel treatment strategies. Gastrointest Tumors. 2021;8(3):107-114.  https://doi.org/10.1159/000514614
  69. Khalili-Tanha T, Khalili-Tanha N, Nazari SE, Chaeichi-Tehrani N, Khazaei M, Aliakbarian M, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Avan A. The therapeutic potential of targeting the angiotensin pathway as a novel therapeutic approach to ameliorating post-surgical adhesions. Curr Pharm Des. 2022;28(3):180-186.  https://doi.org/10.2174/1381612827666210625153011
  70. Bjørnstad J, Ræder J. Post-operative pain after caesarean section. Tidsskr Nor Laegeforen. 2020;140(7).
  71. Pansari A, Faisal M, Jamei M, Abduljalil K. Prediction of basic drug exposure in milk using a lactation model algorithm integrated within a physiologically based pharmacokinetic model. Biopharm Drug Dispos. 2022;43(5):201-212.  https://doi.org/10.1002/bdd.2334
  72. Bakrania BA, Spradley FT, Drummond HA, LaMarca B, Ryan MJ, Granger JP. Preeclampsia: linking placental ischemia with maternal endothelial and vascular dysfunction. Compr Physiol. 2020;11(1):1315-1349. https://doi.org/10.1002/cphy.c200008
  73. Korobkov NA, Bakulina NV, Maximov MV. Arterial hypertension in pregnant women: «comorbidity» or a risk factor for postoperative infectious complications Farmateka. 2023;30(4/5):90-95. (In Russ.). https://doi.org/10.18565/pharmateca.2023.4-5.90-95
  74. Cheng C, Liao AH, Chen CY, Lin YC, Kang YN. A systematic review with network meta-analysis on mono strategy of anaesthesia for preeclampsia in caesarean section. Sci Rep. 2021;11(1):5630. https://doi.org/10.1038/s41598-021-85179-5

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.