The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Toropkina Yu.E.

Rostov State Medical University

Romanenko Yu.V.

Rostov State Medical University

Naletova D.A.

Rostov State Medical University

Alekseev V.V.

Rostov State Medical University

Ovsyannikov V.G.

Rostov State Medical University

Alekseeva N.S.

Rostov State Medical University

Krivokhlyabov I.P.

Rostov State Medical University

Popivnenko M.D.

Rostov State Medical University

Laboratory models of neuropathic pain: review and practical recommendations

Authors:

Toropkina Yu.E., Romanenko Yu.V., Naletova D.A., Alekseev V.V., Ovsyannikov V.G., Alekseeva N.S., Krivokhlyabov I.P., Popivnenko M.D.

More about the authors

Journal: Russian Journal of Pain. 2023;21(2): 38‑49

Read: 2810 times


To cite this article:

Toropkina YuE, Romanenko YuV, Naletova DA, et al. . Laboratory models of neuropathic pain: review and practical recommendations. Russian Journal of Pain. 2023;21(2):38‑49. (In Russ.)
https://doi.org/10.17116/pain20232102138

Recommended articles:
Psychoemotional health of patients with neuropathic pelvic pain under combined magnetic therapy. Rege­nerative Biotechnologies, Preventive, Digi­tal and Predictive Medi­cine. 2025;(1):12-18
Modern and promising therapies for postherpetic neuralgia. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4):27-34
Pharmacological correction of burning eye syndrome. Russian Annals of Ophthalmology. 2025;(2):51-58
Impact of Physical Acti­vity on Vari­cose Veins: an Expe­rimental Study. Journal of Venous Diso­rders. 2025;(2):105-112
Deve­lopment of an expe­rimental rabbit model of rhinitis medi­camentosa. Russian Bulletin of Otorhinolaryngology. 2025;(3):46-52
Coca­rnit in complex therapy of diabetic peri­pheral poly­neuropathy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(7):73-81

References:

  1. Gregory NS, Harris AL, Robinson CR, Dougherty PM, Fuchs PN, Sluka KA. An Overview of Animal Models of Pain: Disease Models and Outcome Measures. The Journal of Pain. 2013;14(11):1255-1269. https://doi.org/10.1016/j.jpain.2013.06.008
  2. Palandi J, Bobinski F, de Oliveira GM, Ilha J. Neuropathic pain after spinal cord injury and physical exercise in animal models: A systematic review and meta-analysis. Neuroscience & Biobehavioral Reviews. 2020;108:781-795.  https://doi.org/10.1016/j.neubiorev.2019.12.016
  3. Kaliyaperumal S, Wilson K, Aeffner F, Dean C. Animal Models of Peripheral Pain: Biology Review and Application for Drug Discovery. Toxicologic Pathology. 2019;48(1):202-219.  https://doi.org/10.1177/0192623319857051
  4. Frantsiyants EM, Kotieva IM, Sheiko EA. Pain as an independent form of the disease. Russian Journal of Pain. 2019;17(3):46-51. (In Russ.). https://doi.org/10.25731/RASP.2019.03.32
  5. Horowitz SH. Venipuncture-induced neuropathic pain: the clinical syndrome, with comparisons to experimental nerve injury models. Pain. 2001;94(3):225-229.  https://doi.org/10.1016/s0304-3959(01)00439-0
  6. Currie GL, Sena ES, Fallon MT, Macleod MR, Colvin LA. Using Animal Models to Understand Cancer Pain in Humans. Current Pain and Headache Reports. 2014;18(6). https://doi.org/10.1007/s11916-014-0423-6
  7. Hama A, Takamatsu H. Chemotherapy-Induced Peripheral Neuropathic Pain and Rodent Models. CNS & Neurological Disorders — Drug Targets. 2016;15(1):7-19.  https://doi.org/10.2174/1871527315666151110125325
  8. Colleoni M, Sacerdote P. Murine models of human neuropathic pain. Biochimica et Biophysica Acta (BBA) — Molecular Basis of Disease. 2010;1802(10):924-933.  https://doi.org/10.1016/j.bbadis.2009.10.012
  9. Coderre TJ, Laferrière A. The emergence of animal models of chronic pain and logistical and methodological issues concerning their use. Journal of Neural Transmission. 2019;127(4):393-406.  https://doi.org/10.1007/s00702-019-02103-y
  10. Garcia-Larrea L, Magnin M. Physiopathologie de la douleur neuropathique: revue des modèles expérimentaux et des mécanismes proposés. La Presse Médicale. 2008;37(2):315-340. (In French). https://doi.org/10.1016/j.lpm.2007.07.025
  11. Kankowski S, Grothe C, Haastert‐Talini K, Barrot M. Neuropathic pain: Spotlighting anatomy, experimental models, mechanisms, and therapeutic aspects. European Journal of Neuroscience. 2021;54(2):4475-4496. https://doi.org/10.1111/ejn.15266/v3/response1
  12. Burma NE, Leduc-Pessah H, Fan CY, Trang T. Animal models of chronic pain: Advances and challenges for clinical translation. Journal of Neuroscience Research. 2016;95(6):1242-1256. https://doi.org/10.1002/jnr.23768
  13. Taneja A, Di Iorio VL, Danhof M, Della Pasqua O. Translation of drug effects from experimental models of neuropathic pain and analgesia to humans. Drug Discovery Today. 2012;17(15-16):837-849.  https://doi.org/10.1016/j.drudis.2012.02.010
  14. Dickenson AH, Patel R. Translational issues in precision medicine in neuropathic pain. Canadian Journal of Pain. 2020;4(1):30-38.  https://doi.org/10.1080/24740527.2020.1720502
  15. Rice ASC, Finnerup NB, Kemp HI, Currie GL, Baron R. Sensory profiling in animal models of neuropathic pain: A call for back-translation. Pain. 2017;159(5):819-824.  https://doi.org/10.1097/j.pain.0000000000001138
  16. Whiteside GT, Adedoyin A, Leventhal L. Predictive validity of animal pain models? A comparison of the pharmacokinetic-pharmacodynamic relationship for pain drugs in rats and humans. Neuropharmacology. 2008;54(5):767-775.  https://doi.org/10.1016/j.neuropharm.2008.01.001
  17. Challa SR. Surgical animal models of neuropathic pain: Pros and Cons. International Journal of Neuroscience. 2014;125(3):170-174.  https://doi.org/10.3109/00207454.2014.922559
  18. Muthuraman A, Diwan V, Jaggi AS, Singh N, Singh D. Ameliorative effects of Ocimum sanctum in sciatic nerve transection-induced neuropathy in rats. Journal of Ethnopharmacology. 2008;120(1):56-62.  https://doi.org/10.1016/j.jep.2008.07.049
  19. Zeltser R, Beilin BZ, Zaslansky R, Seltzer Z. Comparison of autotomy behavior induced in rats by various clinically-used neurectomy methods. Pain. 2000;89(1):19-24.  https://doi.org/10.1016/s0304-3959(00)00342-0
  20. Dowdall T, Robinson I, Meert T. Comparison of five different rat models of peripheral nerve injury. Pharmacology Biochemistry and Behavior. 2005;80(1):93-108.  https://doi.org/10.1016/j.pbb.2004.10.016
  21. Wang LX, Wang ZJ. Animal and cellular models of chronic pain. Advanced Drug Delivery Reviews. 2003;55(8):949-965.  https://doi.org/10.1016/s0169-409x(03)00098-x
  22. Bouali-Benazzouz R, Landry M, Benazzouz A, Fossat P. Neuropathic pain modeling: Focus on synaptic and ion channel mechanisms. Progress in Neurobiology. 2021;201:102030. https://doi.org/10.1016/j.pneurobio.2021.102030
  23. Bennett GJ, Xie Y-K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33(1):87-107.  https://doi.org/10.1016/0304-3959(88)90209-6
  24. Bennett GJ. An animal model of neuropathic pain: A review. Muscle & Nerve. 1993;16(10):1040-1048. https://doi.org/10.1002/mus.880161007
  25. Bennett GJ, Chung JM, Honore M (Table 5.32.2), Seltzer Z. Models of Neuropathic Pain in the Rat. Current Protocols in Pharmacology. 2003;21(1). https://doi.org/10.1002/0471141755.ph0532s21
  26. Leite-Almeida H, Pinto-Ribeiro F, Almeida A. Animal Models for the Study of Comorbid Pain and Psychiatric Disorders. Modern Trends in Psychiatry. Published online 2015:1-21.  https://doi.org/10.1159/000435929
  27. Bourquin A-F, Süveges M, Pertin M, et al. Assessment and analysis of mechanical allodynia-like behavior induced by spared nerve injury (SNI) in the mouse. Pain. 2006;122(1):14e1-14e14. https://doi.org/10.1016/j.pain.2005.10.036
  28. Vadakkan KI, Jia YH, Zhuo M. A behavioral model of neuropathic pain induced by ligation of the common peroneal nerve in mice. J Pain. 2005;6(11):747-756.  https://doi.org/10.1016/j.jpain.2005.07.005
  29. Sung B, Loh HH, Wei L. Association of kappa opioid receptor mRNA upregulation in dorsal root ganglia with mechanical allodynia in mice following nerve injury. Neuroscience Letters. 2000;291(3):163-166.  https://doi.org/10.1016/s0304-3940(00)01394-x
  30. Coull JA, Boudreau D, Bachand K, et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature. 2003;424(6951):938-942.  https://doi.org/10.1038/nature01868
  31. Benbouzid M, Pallage V, Rajalu M, et al. Sciatic nerve cuffing in mice: A model of sustained neuropathic pain. European Journal of Pain. 2008;12(5):591-599.  https://doi.org/10.1016/j.ejpain.2007.10.002
  32. Hao JX, Blakeman KH, Yu W, Hultenby K, Xu XJ, Wiesenfeld-Hallin Z. Development of a Mouse Model of Neuropathic Pain Following Photochemically Induced Ischemia in the Sciatic Nerve. Experimental Neurology. 2000;163(1):231-238.  https://doi.org/10.1006/exnr.2000.7373
  33. Nakae A, Nakai K, Yano K, Hosokawa K, Shibata M, Mashimo T. The Animal Model of Spinal Cord Injury as an Experimental Pain Model. Journal of Biomedicine and Biotechnology. 2011;2011:1-11.  https://doi.org/10.1155/2011/939023
  34. Kim J, Yoon YW, Hong SK, Na HS. Cold and mechanical allodynia in both hindpaws and tail following thoracic spinal cord hemisection in rats: time courses and their correlates. Neuroscience Letters. 2003;343(3):200-204.  https://doi.org/10.1016/s0304-3940(03)00377-x
  35. LaBuda CJ, Cutler TD, Dougherty PM, Fuchs PN. Mechanical and thermal hypersensitivity develops following kainate lesion of the ventral posterior lateral thalamus in rats. Neuroscience Letters. 2000;290(1):79-83.  https://doi.org/10.1016/s0304-3940(00)01323-9
  36. Olivéras JL, Montagne-Clavel J. The GABAA receptor antagonist picrotoxin induces a ‘pain-like’ behavior when administered into the thalamic reticular nucleus of the behaving rat: A possible model for ‘central’ pain? Neuroscience Letters. 1994;179(1-2):21-24.  https://doi.org/10.1016/0304-3940(94)90925-3
  37. Oliveras JL, Montagne-Clavel J. Picrotoxin produces a «central» pain-like syndrome when microinjected into the somato-motor cortex of the rat. Physiol Behav. 1996;60(6):1425-1434. https://doi.org/10.1016/s0031-9384(96)00244-2
  38. Roveroni RC, Parada CA, Veiga MCFA, Tambeli C. Development of a behavioral modelo of TMJ pain in rats: The TMJ formalin test. Pain. 2001;94(2):185-191.  https://doi.org/10.1016/s0304-3959(01)00357-8
  39. Vahidy WH, Ong WY, Farooqui AA, Yeo JF. Effects of intracerebroventricular injections of free fatty acids, lysophospholipids, or platelet activating factor in a mouse model of orofacial pain. Exp Brain Res. 2006;174(4):781-785.  https://doi.org/10.1007/s00221-006-0672-7
  40. Chung JY, Choi JH, Hwang CY, Youn HY. Pyridoxine induced neuropathy by subcutaneous administration in dogs. Journal of Veterinary Science. 2008;9(2):127.  https://doi.org/10.4142/jvs.2008.9.2.127
  41. Li SX, Cui N, Zhang CL, Zhao XL, Yu SF, Xie KQ. Effect of subchronic exposure to acrylamide induced on the expression of bcl-2, bax and caspase-3 in the rat nervous system. Toxicology. 2006;217(1):46-53.  https://doi.org/10.1016/j.tox.2005.08.018
  42. Juntunen J, Teräväinen H, Eriksson K, Panula P, Larsen A. Experimental alcoholic neuropathy in the rat: histological and electrophysiological study on the myoneural junctions and the peripheral nerves. Acta Neuropathol. 1978;41(2):131-137.  https://doi.org/10.1007/bf00689764
  43. Kandhare AD, Raygude KS, Ghosh P, Ghule AE, Bodhankar SL. Therapeutic role of curcumin in prevention of biochemical and behavioral aberration induced by alcoholic neuropathy in laboratory animals. Neuroscience Letters. 2012;511(1):18-22.  https://doi.org/10.1016/j.neulet.2012.01.019
  44. Sullivan KA, Lentz SI, Roberts JL Jr, Feldman EL. Criteria for creating and assessing mouse models of diabetic neuropathy. Curr Drug Targets. 2008;9(1):3-13.  https://doi.org/10.2174/138945008783431763
  45. Takasaki I, Andoh T, Shiraki K, Kuraishi Y. Allodynia and hyperalgesia induced by herpes simplex virus type-1 infection in mice. Pain. 2000;86(1):95-101.  https://doi.org/10.1016/s0304-3959(00)00240-2
  46. Chen SR, Pan HL. Effect of systemic and intrathecal gabapentin on allodynia in a new rat model of postherpetic neuralgia. Brain Res. 2005;25:1042-1108. https://doi.org/10.1016/j.brainres.2005.02.024
  47. Schwei MJ, Honore P, Rogers SD, et al. Neurochemical and Cellular Reorganization of the Spinal Cord in a Murine Model of Bone Cancer Pain. The Journal of Neuroscience. 1999;19(24):10886-10897. https://doi.org/10.1523/jneurosci.19-24-10886.1999
  48. Medhurst SJ, Walker K, Bowes M, et al. A rat model of bone cancer pain. Pain. 2002;96(1):129-140.  https://doi.org/10.1016/s0304-3959(01)00437-7
  49. Mao-Ying Q. Analgesic effects of electroacupuncture combined with Celebrex on rats with tibial cancer pain. Journal of Chinese Integrative Medicine. 2008;6(8):830-835.  https://doi.org/10.3736/jcim20080812
  50. Sasamura T, Nakamura S, Iida Y, Fujii H, Murata J, Saiki I, Nojima H, Kuraishi Y. Morphine analgesia suppresses tumor growth and metastasis in a mouse model of cancer pain produced by orthotopic tumor inoculation. Eur J Pharmacol. 2002;441:185-191.  https://doi.org/10.1016/s0014-2999(02)01450-4
  51. Currie GL, Delaney A, Bennett MI, et al. Animal models of bone cancer pain: Systematic review and meta-analyses. Pain. 2013;154(6):917-926.  https://doi.org/10.1016/j.pain.2013.02.033
  52. Shimoyama M, Tanaka K, Hasue F, Shimoyama N. A mouse model of neuropathic cancer pain. Pain. 2002;99(1):167-174.  https://doi.org/10.1016/s0304-3959(02)00073-8
  53. Dalziel RG, Bingham S, Sutton D, et al. Allodynia in rats infected with varicella zoster virus — a small animal model for post-herpetic neuralgia. Brain Research Reviews. 2004;46(2):234-242.  https://doi.org/10.1016/j.brainresrev.2004.07.008
  54. Wasserman JK, Koeberle PD. Development and characterization of a hemorrhagic rat model of central post-stroke pain. Neuroscience. 2009;161(1):173-183.  https://doi.org/10.1016/j.neuroscience.2009.03.042
  55. Jaggi AS, Jain V, Singh N. Animal models of neuropathic pain. Fundamental & Clinical Pharmacology. 2011;25(1):1-28.  https://doi.org/10.1111/j.1472-8206.2009.00801.x
  56. Currie GL, Delaney A, Bennett MI, et al. Animal models of bone cancer pain: Systematic review and meta-analyses. Pain. 2013;154(6):917-926.  https://doi.org/10.1016/j.pain.2013.02.033
  57. Sasaki A, Kuraishi Y. Various neuropathic pain models. Folia Pharmacologica Japonica. 2006;127(3):151-155.  https://doi.org/10.1254/fpj.127.151
  58. Pan HL, Khan GM, Alloway KD, Chen SR. Resiniferatoxin Induces Paradoxical Changes in Thermal and Mechanical Sensitivities in Rats: Mechanism of Action. The Journal of Neuroscience. 2003;23(7):2911-2919. https://doi.org/10.1523/jneurosci.23-07-02911.2003
  59. Klusáková I, Dubový P. Experimental models of peripheral neuropathic pain based on traumatic nerve injuries — An anatomical perspective. Annals of Anatomy — Anatomischer Anzeiger. 2009;191(3):248-259.  https://doi.org/10.1016/j.aanat.2009.02.007
  60. Ueda H, Inoue M. Animal models and peripheral nociception tests for the study of neuropathic pain. Folia Pharmacologica Japonica. 2001;118(2):89-95.  https://doi.org/10.1254/fpj.118.89
  61. Abboud C, Duveau A, Bouali-Benazzouz R, et al. Animal models of pain: Diversity and benefits. Journal of Neuroscience Methods. 2021;348:108997. https://doi.org/10.1016/j.jneumeth.2020.108997
  62. Boyce-Rustay J, Jarvis M. Neuropathic Pain: Models and Mechanisms. Current Pharmaceutical Design. 2009;15(15):1711-1716. https://doi.org/10.2174/138161209788186272
  63. Sapon NA, Chitaeva GE. Neurological pain syndrome experimental design and intensity estimation. Ukrainian Neurosurgical Journal. 2006;0(1):111-117.  https://doi.org/10.25305/unj.126757
  64. Flecknell PA, Liles JH. The effects of surgical procedures, halothane anaesthesia and nalbuphine on locomotor activity and food and water consumption in rats. Laboratory Animals. 1991;25(1):50-60.  https://doi.org/10.1258/002367791780808239
  65. Bennett GJ, Xie YK. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain. 1988;33(1):87-107.  https://doi.org/10.1016/0304-3959(88)90209-6
  66. Fonseca-Rodrigues D, Amorim D, Almeida A, Pinto-Ribeiro F. Emotional and cognitive impairments in the peripheral nerve chronic constriction injury model (CCI) of neuropathic pain: A systematic review. Behavioural Brain Research. 2021;399:113008. https://doi.org/10.1016/j.bbr.2020.113008
  67. Ovsjannikov VG. Ocherki patofiziologii boli. Rostov-na-Donu: RGMU; 2003. (In Russ.).
  68. Aleksandrovskaya NV, Kruglova AA. Comparative evaluation of various methods of experimental modeling of neuropathic pain syndrome in rats. Laboratory Animals for Science. 2021;3:27-34. (In Russ.). https://doi.org/10.29296/2618723x-2021-03-04
  69. Abbott FV, Young SN. The effect of tryptophan supplementation on autotomy induced by nerve lesions in rats. Pharmacology Biochemistry and Behavior. 1991;40(2):301-304.  https://doi.org/10.1016/0091-3057(91)90557-i
  70. Brabb T, Carbone L, Snyder J, Phillips N. Institutional Animal Care and Use Committee Considerations for Animal Models of Peripheral Neuropathy. ILAR Journal. 2014;54(3):329-337.  https://doi.org/10.1093/ilar/ilt045
  71. Chesler EJ, Wilson SG, Lariviere WR, Rodriguez-Zas SL, Mogil JS. Identification and ranking of genetic and laboratory environment factors influencing a behavioral trait, thermal nociception, via computational analysis of a large data archive. Neuroscience & Biobehavioral Reviews. 2002;26(8):907-923.  https://doi.org/10.1016/s0149-7634(02)00103-3
  72. Sessle BJ. Chronic Orofacial Pain: Models, Mechanisms, and Genetic and Related Environmental Influences. International Journal of Molecular Sciences. 2021;22(13):7112. https://doi.org/10.3390/ijms22137112
  73. Vissers K, De Jongh R, Hoffmann V, Heylen R, Crul B, Meert T. Internal and external factors affecting the development of neuropathic pain in rodents. Is it all about pain? Pain Practice: The Official Journal of World Institute of Pain. 2003;3(4):326-342.  https://doi.org/10.1111/j.1530-7085.2003.03037.x
  74. Raber P, Devor M. Social variables affect phenotype in the neuroma model of neuropathic pain. Pain. 2002;97(1):139-150.  https://doi.org/10.1016/s0304-3959(02)00013-1
  75. Shir Y, Zeltser R, Vatine JJ, et al. Correlation of intact sensibility and neuropathic pain-related behaviors in eight inbred and outbred rat strains and selection lines. Pain. 2001;90(1):75-82.  https://doi.org/10.1016/s0304-3959(00)00388-2
  76. Yoon YW, Lee DH, Lee BH, Chung K, Chung JM. Different strains and substrains of rats show different levels of neuropathic pain behaviors. Experimental Brain Research. 1999;129(2):167-171.  https://doi.org/10.1007/s002210050886
  77. Perissin L, Facchin P, Porro CA. Tonic pain response in mice: effects of sex, season and time of day. Life Sciences. 2003;72(8):897-907.  https://doi.org/10.1016/s0024-3205(02)02344-5
  78. Guindon J, Blanton H, Brauman S, Donckels K, Narasimhan M, Benamar K. Sex Differences in a Rodent Model of HIV-1-Associated Neuropathic Pain. International Journal of Molecular Sciences. 2019;20(5):1196. https://doi.org/10.3390/ijms20051196
  79. Perissin L, Facchin P, Porro CA. Diurnal variations in tonic pain reactions in mice. Life Sciences. 2000;67(12):1477-1488. https://doi.org/10.1016/s0024-3205(00)00733-5
  80. Berman D, Rodin BE. The influence of housing condition on autotomy following dorsal rhizotomy in rats. Pain. 1982;13(3):307-311.  https://doi.org/10.1016/0304-3959(82)90020-3
  81. Shir Y, Ratner A, Raja SN, Campbell JN, Seltzer Z. Neuropathic pain following partial nerve injury in rats is suppressed by dietary soy. Neuroscience Letters. 1998;240(2):73-76.  https://doi.org/10.1016/s0304-3940(97)00923-3
  82. Shir Y, Raja SN, Weissman CS, Campbell JN, Seltzer Z. Consumption of Soy Diet before Nerve Injury Preempts the Development of Neuropathic Pain in Rats. Anesthesiology. 2001;95(5):1238-1244. https://doi.org/10.1097/00000542-200111000-00031
  83. Shir Y, Sheth R, Campbell JN, Raja SN, Seltzer Z. Soy-Containing Diet Suppresses Chronic Neuropathic Sensory Disorders in Rats. Anesthesia and Analgesia. Published online April 2001:1029-1034. https://doi.org/10.1097/00000539-200104000-00042
  84. Seltzer Z, Raz I, Brandt R, Boim R. Autotomy is prevented by hyperglycemia and reduced by consuming sweet solutions. Pain. 1987;30:S202. https://doi.org/10.1016/0304-3959(87)91475-8
  85. Robinson I, Dowdall T, Meert TF. Development of neuropathic pain is affected by bedding texture in two models of peripheral nerve injury in rats. Neuroscience Letters. 2004;368(1):107-111.  https://doi.org/10.1016/j.neulet.2004.06.078
  86. Belozertseva IV, Kashkin VA, Shekunova EV. Influence of the Bedding Type on the Development of Tactile Allodynia After Sciatic Nerve Ligation in Wistar Rats. Laboratory Animals for Science. 2018;1(1). (In Russ.). https://doi.org/10.29296/2618723x-2018-01-05
  87. Moehring F, O’Hara CL, Stucky CL. Bedding Material Affects Mechanical Thresholds, Heat Thresholds, and Texture Preference. The Journal of Pain. 2016;17(1):50-64.  https://doi.org/10.1016/j.jpain.2015.08.014
  88. Brownjohn PW, Ashton JC. A technical note for improving animal welfare and model validity in the chronic constriction injury model of neuropathic pain. European Journal of Pain. 2012;16(10):1477-1477. https://doi.org/10.1002/j.1532-2149.2012.00199.x

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.