The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Davydov O.S.

Institute of General Pathology and Pathophysiology

Purinergic mechanisms of pain relief: fashionable topic or real opportunity to improve the quality of analgesic therapy?

Authors:

Davydov O.S.

More about the authors

Journal: Russian Journal of Pain. 2024;22(4): 86‑95

Read: 1778 times


To cite this article:

Davydov OS. Purinergic mechanisms of pain relief: fashionable topic or real opportunity to improve the quality of analgesic therapy? Russian Journal of Pain. 2024;22(4):86‑95. (In Russ.)
https://doi.org/10.17116/pain20242204186

Recommended articles:
Psychoemotional health of patients with neuropathic pelvic pain under combined magnetic therapy. Rege­nerative Biotechnologies, Preventive, Digi­tal and Predictive Medi­cine. 2025;(1):12-18
Modern and promising therapies for postherpetic neuralgia. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(4):27-34
Pharmacological correction of burning eye syndrome. Russian Annals of Ophthalmology. 2025;(2):51-58
Coca­rnit in complex therapy of diabetic peri­pheral poly­neuropathy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(7):73-81

References:

  1. Yakhno NN, Kukushkin ML. Chronic pain: medico-biologic and sotsioeconomic aspects. Vestnik Rossijskoj akademii meditsinskikh nauk = Annals of the Russian Academy of Medical Sciences. 2012;9:54-58. (In Russ.).
  2. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006 May;10(4):287-333. Epub 2005 Aug 10. PMID: 16095934. https://doi.org/10.1016/j.ejpain.2005.06.009
  3. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;152(3 Suppl):S2-S15.  https://doi.org/10.1016/j.pain.2010.09.030
  4. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267-284.  https://doi.org/10.1016/j.cell.2009.09.028
  5. Woolf CJ, Max MB. Mechanism-based pain diagnosis: issues for analgesic drug development. Anesthesiology. 2001 July;95(1):241-249. PMID: 11465563. https://doi.org/10.1097/00000542-200107000-00034
  6. Burnstock G. Introductory overview of purinergic signalling. Front Biosci (Elite Ed). 2011 June 01;3(3):896-900. PMID: 21622101. https://doi.org/10.2741/e298
  7. Magni G, Riccio D, Ceruti S. Tackling Chronic Pain and Inflammation through the Purinergic System. Curr Med Chem. 2018;25(32):3830-3865. PMID: 28699505. https://doi.org/10.2174/0929867324666170710110630
  8. Kukushkin ML, Reshetnyak VK. Purinergic mechanisms of pain and analgesia. Russian Journal of Pain. 2019;17(1):51-56. (In Russ.). https://doi.org/10.25731/RASP.2019.01.09
  9. Nyhan WL. Disorders of purine and pyrimidine metabolism. Mol Genet Metab. 2005 Sept-Oct;86(1-2):25-33. PMID: 16176880. https://doi.org/10.1016/j.ymgme.2005.07.027
  10. Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol. 2017 Sept 25;8:661. PMID: 28993732; PMCID: PMC5622197. https://doi.org/10.3389/fphar.2017.00661
  11. Burnstock G. Purinergic nerves. Pharmacol Rev. 1972 Sept;24(3):509-581. PMID: 4404211.
  12. Burnstock G. Purinergic receptors. J Theor Biol. 1976 Oct 21;62(2):491-503. PMID: 994531. https://doi.org/10.1016/0022-5193(76)90133-8
  13. Abbracchio MP, Burnstock G. Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther. 1994;64(3):445-475. PMID: 7724657. https://doi.org/10.1016/0163-7258(94)00048-4
  14. Burnstock G, Wood JN. Purinergic receptors: their role in nociception and primary afferent neurotransmission. Curr Opin Neurobiol. 1996 Aug;6(4):526-532. PMID: 8794102. https://doi.org/10.1016/s0959-4388(96)80060-2
  15. Burnstock G. A unifying purinergic hypothesis for the initiation of pain. Lancet. 1996 June 08;347(9015):1604-1605. PMID: 8667873. https://doi.org/10.1016/s0140-6736(96)91082-x
  16. Burnstock G. Purine and pyrimidine receptors. Cell Mol Life Sci. 2007 June;64(12):1471-1483. PMID: 17375261; PMCID: PMC11149472. https://doi.org/10.1007/s00018-007-6497-0
  17. Burnstock G. Purinergic Mechanisms and Pain. Adv Pharmacol. 2016;75:91-137. Epub 2015 Nov 04. PMID: 26920010. https://doi.org/10.1016/bs.apha.2015.09.001
  18. Adebiyi MG, Manalo J, Kellems RE, Xia Y. Differential role of adenosine signaling cascade in acute and chronic pain. Neurosci Lett. 2019 Nov 01;712:134483. Epub 2019 Sept 05. PMID: 31494223. https://doi.org/10.1016/j.neulet.2019.134483
  19. Jin X, Mi W. Adenosine for postoperative analgesia: A systematic review and meta-analysis. PLoS One. 2017 Mar 23;12(3):e0173518. PMID: 28333936; PMCID: PMC5363816. https://doi.org/10.1371/journal.pone.0173518
  20. Aghamohammadi D, Eydi M, Pishgahi A, Esmaeilinejad A, Dolatkhah N. Pilot prospective open-label one-arm trial investigating intrathecal Adenosine in neuropathic pain after lumbar discectomy. BMC Res Notes. 2020 June 12;13(1):284. PMID: 32532345; PMCID: PMC7291557. https://doi.org/10.1186/s13104-020-05133-y
  21. Vincenzi F, Pasquini S, Borea PA, Varani K. Targeting Adenosine Receptors: A Potential Pharmacological Avenue for Acute and Chronic Pain. Int J Mol Sci. 2020 Nov 18;21(22):8710. PMID: 33218074; PMCID: PMC7698931. https://doi.org/10.3390/ijms21228710
  22. Sawynok J. Adenosine receptor targets for pain. Neuroscience. 2016 Dec 03;338:1-18. Epub 2015 Oct 21. PMID: 26500181. https://doi.org/10.1016/j.neuroscience.2015.10.031
  23. Bennetts FM, Mobbs JI, Ventura S, Thal DM. The P2X1 receptor as a therapeutic target. Purinergic Signal. 2022 Dec;18(4):421-433. Epub 2022 July 11. PMID: 35821454; PMCID: PMC9832217. https://doi.org/10.1007/s11302-022-09880-4
  24. Illes P, Müller CE, Jacobson KA, Grutter T, Nicke A, Fountain SJ, Kennedy C, Schmalzing G, Jarvis MF, Stojilkovic SS, King BF, Di Virgilio F. Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br J Pharmacol. 2021 Feb;178(3):489-514. Epub 2020 Dec 21. PMID: 33125712; PMCID: PMC8199792. https://doi.org/10.1111/bph.15299
  25. King BF. Rehabilitation of the P2X5 receptor: a re-evaluation of structure and function. Purinergic Signal. 2023 June;19(2):421-439. Epub 2022 Oct 24. PMID: 36279087; PMCID: PMC10247652. https://doi.org/10.1007/s11302-022-09903-0
  26. Burnstock G, Kennedy C. P2X receptors in health and disease. Adv Pharmacol. 2011;61:333-372. PMID: 21586364. https://doi.org/10.1016/B978-0-12-385526-8.00011-4
  27. Puchałowicz K, Tarnowski M, Baranowska-Bosiacka I, Chlubek D, Dziedziejko V. P2X and P2Y receptors — role in the pathophysiology of the nervous system. Int J Mol Sci. 2014 Dec 18;15(12):23672-23704. PMID: 25530618; PMCID: PMC4284787. https://doi.org/10.3390/ijms151223672
  28. Jacobson KA, Müller CE. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology. 2016 May;104:31-49. Epub 2015 Dec 12. PMID: 26686393; PMCID: PMC4871727. https://doi.org/10.1016/j.neuropharm.2015.12.001
  29. Dunn PM, Zhong Y, Burnstock G. P2X receptors in peripheral neurons. Prog Neurobiol. 2001 Oct;65(2):107-134. PMID: 11403876. https://doi.org/10.1016/s0301-0082(01)00005-3
  30. Nakagawa T, Wakamatsu K, Zhang N, Maeda S, Minami M, Satoh M, Kaneko S. Intrathecal administration of ATP produces long-lasting allodynia in rats: differential mechanisms in the phase of the induction and maintenance. Neuroscience. 2007 June 29;147(2):445-455. Epub 2007 June 01. PMID: 17543465. https://doi.org/10.1016/j.neuroscience.2007.03.045
  31. Giniatullin R, Nistri A. Desensitization properties of P2X3 receptors shaping pain signaling. Front Cell Neurosci. 2013 Dec 06;7:245. PMID: 24367291; PMCID: PMC3854565. https://doi.org/10.3389/fncel.2013.00245
  32. Tsuda M, Ueno S, Inoue K. In vivo pathway of thermal hyperalgesia by intrathecal administration of alpha,beta-methylene ATP in mouse spinal cord: involvement of the glutamate-NMDA receptor system. Br J Pharmacol. 1999 May;127(2):449-456. PMID: 10385245; PMCID: PMC1566049. https://doi.org/10.1038/sj.bjp.0702582
  33. Tsuda M, Hasegawa S, Inoue K. P2X receptors-mediated cytosolic phospholipase A2 activation in primary afferent sensory neurons contributes to neuropathic pain. J Neurochem. 2007 Nov;103(4):1408-1416. Epub 2007 Aug 23. PMID: 17725579. https://doi.org/10.1111/j.1471-4159.2007.04861.x
  34. Lin J, Li G, Den X, Xu C, Liu S, Gao Y, Liu H, Zhang J, Li X, Liang S. VEGF and its receptor-2 involved in neuropathic pain transmission mediated by P2X₂/₃ receptor of primary sensory neurons. Brain Res Bull. 2010 Oct 30;83(5):284-291. Epub 2010 Aug 10.  https://doi.org/10.1016/j.brainresbull.2010.08.002
  35. Ford AP. P2X3 antagonists: novel therapeutics for afferent sensitization and chronic pain. Pain Manag. 2012 May;2(3):267-277. PMID: 24654669. https://doi.org/10.2217/pmt.12.16
  36. Lambertucci C, Dal Ben D, Buccioni M, Marucci G, Thomas A, Volpini R. Medicinal chemistry of P2X receptors: agonists and orthosteric antagonists. Curr Med Chem. 2015;22(7):915-928. PMID: 25515515. https://doi.org/10.2174/0929867321666141215093513
  37. Wang Y, Zhang X, Guo QL, Zou WY, Huang CS, Yan JQ. Cyclooxygenase inhibitors suppress the expression of P2X3 receptors in the DRG and attenuate hyperalgesia following chronic constriction injury in rats. Neurosci Lett. 2010 July 05;478(2):77-81. Epub 2010 May 09. PMID: 20450958. https://doi.org/10.1016/j.neulet.2010.04.069
  38. Yu J, Fu P, Zhang Y, Liu S, Cui D. Pregabalin alters nociceptive behavior and expression level of P2X3 receptor in the spinal dorsal horn in a rat model induced by chronic compression of the dorsal root ganglion. Anat Rec (Hoboken). 2013 Dec;296(12):1907-1912. Epub 2013 Oct 17. PMID: 24136739.
  39. Xu J, Chu KL, Brederson JD, Jarvis MF, McGaraughty S. Spontaneous firing and evoked responses of spinal nociceptive neurons are attenuated by blockade of P2X3 and P2X2/3 receptors in inflamed rats. J Neurosci Res. 2012 Aug;90(8):1597-1606. Epub 2012 Mar 16. PMID: 22422599. https://doi.org/10.1002/jnr.23042
  40. Giniatullin R, Nistri A. Role of ATP in migraine mechanisms: Focus on P2X3 receptors. J Headache Pain. 2023;24:1.  https://doi.org/10.1186/s10194-022-01535-4
  41. Sophocleous RA, Ooi L, Sluyter R. The P2X4 Receptor: Cellular and Molecular Characteristics of a Promising Neuroinflammatory Target. Int J Mol Sci. 2022 May 20;23(10):5739. PMID: 35628550; PMCID: PMC9147237. https://doi.org/10.3390/ijms23105739
  42. Inoue K. The Role of ATP Receptors in Pain Signaling. Neurochem Res. 2022 Sept;47(9):2454-2468. Epub 2022 Jan 30. PMID: 35094248. https://doi.org/10.1007/s11064-021-03516-6
  43. Montilla A, Mata GP, Matute C, Domercq M. Contribution of P2X4 Receptors to CNS Function and Pathophysiology. Int J Mol Sci. 2020;21:5562. https://doi.org/10.3390/ijms21155562
  44. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K. P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature. 2003 Aug 14;424(6950):778-783. PMID: 12917686. https://doi.org/10.1038/nature01786
  45. Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F, Buell GN, Reeve AJ, Chessell IP, Rassendren F. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci. 2008 Oct 29;28(44):11263-11268. PMID: 18971468; PMCID: PMC6671487. https://doi.org/10.1523/JNEUROSCI.2308-08.2008
  46. Zhou T-T, Wu J-R, Chen Z-Y, Liu Z-X, Miao B. Effects of dexmedetomidine on P2X4Rs, p38-MAPK and BDNF in spinal microglia in rats with spared nerve injury. Brain Res. 2014 June 03;1568:21-30. Epub 2014 Apr 30. PMID: 24792496. https://doi.org/10.1016/j.brainres.2014.04.025
  47. Nagata K, Imai T, Yamashita T, Tsuda M, Tozaki-Saitoh H, Inoue K. Antidepressants inhibit P2X4 receptor function: a possible involvement in neuropathic pain relief. Mol Pain. 2009 Apr 23;5:20. PMID: 19389225; PMCID: PMC2680826. https://doi.org/10.1186/1744-8069-5-20
  48. Tian M, Abdelrahman A, Weinhausen S, Hinz S, Weyer S, Dosa S, El-Tayeb A, Müller CE. Carbamazepine derivatives with P2X4 receptor-blocking activity. Bioorg Med Chem. 2014 Feb 01;22(3):1077-1088. Epub 2013 Dec 25. PMID: 24411477. https://doi.org/10.1016/j.bmc.2013.12.035
  49. Matsumura Y, Yamashita T, Sasaki A, Nakata E, Kohno K, Masuda T, Tozaki-Saitoh H, Imai T, Kuraishi Y, Tsuda M, Inoue K. A novel P2X4 receptor-selective antagonist produces anti-allodynic effect in a mouse model of herpetic pain. Sci Rep. 2016 Aug 31;6:32461. PMID: 27576299; PMCID: PMC5006034. https://doi.org/10.1038/srep32461
  50. Inoue K. Role of the P2X4 receptor in neuropathic pain. Curr Opin Pharmacol. 2019 Aug;47:33-39. Epub 2019 Mar 14. PMID: 30878800. https://doi.org/10.1016/j.coph.2019.02.001
  51. Zhang WJ, Zhu ZM, Liu ZX. The role and pharmacological properties of the P2X7 receptor in neuropathic pain. Brain Res Bull. 2020 Feb;155:19-28. Epub 2019 Nov 25. PMID: 31778766. https://doi.org/10.1016/j.brainresbull.2019.11.006
  52. North RA. P2X receptors. Philos Trans R Soc Lond B Biol Sci. 2016 Aug 05;371(1700):20150427. PMID: 27377721; PMCID: PMC4938027. https://doi.org/10.1098/rstb.2015.0427
  53. Inoue K, Tsuda M. Nociceptive signaling mediated by P2X3, P2X4 and P2X7 receptors. Biochem Pharmacol. 2021 May;187:114309. Epub 2020 Oct 29. PMID: 33130129. https://doi.org/10.1016/j.bcp.2020.114309
  54. Andó RD, Méhész B, Gyires K, Illes P, Sperlágh B. A comparative analysis of the activity of ligands acting at P2X and P2Y receptor subtypes in models of neuropathic, acute and inflammatory pain. Br J Pharmacol. 2010 Mar;159(5):1106-1117. Epub 2010 Feb 05. PMID: 20136836; PMCID: PMC2839268. https://doi.org/10.1111/j.1476-5381.2009.00596.x
  55. Kwon SG, Roh DH, Yoon SY, Moon JY, Choi SR, Choi HS, Kang SY, Han HJ, Beitz AJ, Lee JH. Blockade of peripheral P2Y1 receptors prevents the induction of thermal hyperalgesia via modulation of TRPV1 expression in carrageenan-induced inflammatory pain rats: involvement of p38 MAPK phosphorylation in DRGs. Neuropharmacology. 2014 Apr;79:368-379. Epub 2013 Dec 12. PMID: 24333674. https://doi.org/10.1016/j.neuropharm.2013.12.005
  56. Zhu H, Yu Y, Zheng L, Wang L, Li C, Yu J, Wei J, Wang C, Zhang J, Xu S, Wei X, Cui W, Wang Q, Chen X. Chronic inflammatory pain upregulates expression of P2Y2 receptor in small-diameter sensory neurons. Metab Brain Dis. 2015 Dec;30(6):1349-1358. Epub 2015 June 12. PMID: 26062804. https://doi.org/10.1007/s11011-015-9695-8
  57. Jasmer KJ, Muñoz Forti K, Woods LT, Cha S, Weisman GA. Therapeutic potential for P2Y2 receptor antagonism. Purinergic Signal. 2023 June;19(2):401-420. Epub 2022 Oct 11. PMID: 36219327; PMCID: PMC10247620. https://doi.org/10.1007/s11302-022-09900-3
  58. Li N, Lu Z-Y, Yu L-H, Burnstock G, Deng X-M, Ma B. Inhibition of G protein-coupled P2Y2 receptor induced analgesia in a rat model of trigeminal neuropathic pain. Mol Pain. 2014 Mar 18;10:21. PMID: 24642246; PMCID: PMC3995183. https://doi.org/10.1186/1744-8069-10-21
  59. Communi D, Horckmans M, Boeynaems JM. P2Y4, P2Y6 and P2Y11 receptors: From the early days of cloning to their function. Biochem Pharmacol. 2021 May;187:114347. Epub 2020 Nov 22. PMID: 33232731. https://doi.org/10.1016/j.bcp.2020.114347
  60. Barragán-Iglesias P, Mendoza-Garcés L, Pineda-Farias JB, Solano-Olivares V, Rodríguez-Silverio J, Flores-Murrieta FJ, Granados-Soto V, Rocha-González HI. Participation of peripheral P2Y1, P2Y6 and P2Y11 receptors in formalin-induced inflammatory pain in rats. Pharmacol Biochem Behav. 2015 Jan;128:23-32. Epub 2014 Nov 06. PMID: 25449358. https://doi.org/10.1016/j.pbb.2014.11.001
  61. Anwar S, Pons V, Rivest S. Microglia Purinoceptor P2Y6: An Emerging Therapeutic Target in CNS Diseases. Cells. 2020 July 01;9(7):1595. PMID: 32630251; PMCID: PMC7407337. https://doi.org/10.3390/cells9071595
  62. Barragán-Iglesias P, Pineda-Farias JB, Cervantes-Durán C, Bravo-Hernández M, Rocha-González HI, Murbartián J, Granados-Soto V. Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells. Mol Pain. 2014 May 20;10:29. PMID: 24886406; PMCID: PMC4039548. https://doi.org/10.1186/1744-8069-10-29
  63. Ming LG, Hu DX, Zuo C, Zhang WJ. G protein-coupled P2Y12 receptor is involved in the progression of neuropathic pain. Biomed Pharmacother. 2023 June;162:114713. Epub 2023 Apr 20. PMID: 37084563. https://doi.org/10.1016/j.biopha.2023.114713
  64. Zhang W-J, Li M-Y, Wang C-Y, Feng X, Hu D-X, Wu L-D, Hu J-L. P2Y12 receptor involved in the development of chronic nociceptive pain as a sensory information mediator. Biomed Pharmacother. 2023 Aug;164:114975. Epub 2023 June 01. PMID: 37267639. https://doi.org/10.1016/j.biopha.2023.114975
  65. Zhang X, Li G. P2Y receptors in neuropathic pain. Pharmacol Biochem Behav. 2019 Nov;186:172788. Epub 2019 Sept 05. PMID: 31494119. https://doi.org/10.1016/j.pbb.2019.172788
  66. Dsouza C, Komarova SV. Characterization of Potency of the P2Y13 Receptor Agonists: A Meta-Analysis. Int J Mol Sci. 2021 Mar 27;22(7):3468. PMID: 33801677; PMCID: PMC8036966. https://doi.org/10.3390/ijms22073468
  67. Lin J, Zhang Y-Y, Liu F, Fang X-Y, Liu M-K, Huang C-L, Wang H, Liao D-Q, Zhou C, Shen J-F. The P2Y14 receptor in the trigeminal ganglion contributes to the maintenance of inflammatory pain. Neurochem Int. 2019 Dec;131:104567. Epub 2019 Oct 3. PMID: 31586590. https://doi.org/10.1016/j.neuint.2019.104567
  68. Wang M-J, Jing X-Y, Wang Y-Z, Yang B-R, Lu Q, Hu H, Kang L. Exercise, Spinal Microglia and Neuropathic Pain: Potential Molecular Mechanisms. Neurochem Res. 2024 Jan;49(1):29-37. Epub 2023 Sept 19. PMID: 37725293; PMCID: PMC10776684. https://doi.org/10.1007/s11064-023-04025-4
  69. Zou Y, Yang R, Li L, Xu X, Liang S. Purinergic signaling: a potential therapeutic target for depression and chronic pain. Purinergic Signal. 2023 Mar;19(1):163-172. Epub 2021 Aug 02. PMID: 34338957; PMCID: PMC9984625. https://doi.org/10.1007/s11302-021-09801-x
  70. 7Amelin AV, Afanasyev VV, Barantsevich ER, Burd SG, Grigolashvili MA, Davydov OS, Danilov AB, Zharkinbekova NA, Iskra DA, Kukushkin ML, Naumov AV, Nurguzhaev ES, Rachin AP, Churyukanov MV, Yakupov EZ. Pyrimidine nucleotides in pain management. Consensus of the international group of specialists. Russian Journal of Pain. 2023;21(1):78-84. (In Russ.). https://doi.org/10.17116/pain20232101178
  71. Package leaflet (information for consumers) of the dietary supplement Xefomyelin. Certificate of state registration No. AM.01.07.01.003.R.001280.12.22 dated 01.12.2022. (In Russ.). Accessed September 02, 2024. https://ksef.ru/instruction
  72. Pizzorno G, Cao D, Leffert JJ, Russell RL, Zhang D, Handschumacher RE. Homeostatic control of uridine and the role of uridine phosphorylase: a biological and clinical update. Biochim Biophys Acta. 2002 July 18;1587(2-3):133-144. PMID: 12084455. https://doi.org/10.1016/s0925-4439(02)00076-5
  73. Zhang Y, Guo S, Xie C, Fang J. Uridine Metabolism and Its Role in Glucose, Lipid, and Amino Acid Homeostasis. Biomed Res Int. 2020 Apr 14;2020:7091718. PMID: 32382566; PMCID: PMC7180397. https://doi.org/10.1155/2020/7091718
  74. Yang Y, Ye Y, Deng Y, Gao L. Uridine and its role in metabolic diseases, tumors, and neurodegenerative diseases. Front Physiol. 2024;15:1360891. https://doi.org/10.3389/fphys.2024.1360891
  75. Cansev M. Uridine and cytidine in the brain: their transport and utilization. Brain Res Rev. 2006 Sept;52(2):389-397. PMID: 16769123. https://doi.org/10.1016/j.brainresrev.2006.05.001
  76. Yamamoto T, Koyama H, Kurajoh M, Shoji T, Tsutsumi Z, Moriwaki Y. Biochemistry of uridine in plasma. Clin Chim Acta. 2011 Sep 18;412(19-20): 1712-1724. Epub 2011 June 14. PMID: 21689643. https://doi.org/10.1016/j.cca.2011.06.006
  77. Kapalka GM, ed. Chapter 4 — Substances Involved in Neurotransmission. In: Practical Resources for the Mental Health Professional, Nutritional and Herbal Therapies for Children and Adolescents. Academic Press; 2010;71-99. ISSN 18730450; ISBN 9780123749277. https://doi.org/10.1016/B978-0-12-374927-7.00004-2
  78. Vincenzetti S, Polzonetti V, Micozzi D, Pucciarelli S. Enzymology of Pyrimidine Metabolism and Neurodegeneration. Curr Med Chem. 2016;23(14):1408-1431. PMID: 27063261. https://doi.org/10.2174/0929867323666160411125803
  79. Yousuf A, Klinger F, Schicker K, Boehm S. Nucleotides control the excitability of sensory neurons via two P2Y receptors and a bifurcated signaling cascade. Pain. 2011;15(8):1899-1908. https://doi.org/10.1016/j.pain.2011.04.016
  80. Mukherjee C, Lejkowitz RJ. Desensitization of beta-adrenergic receptors by beta-adrenergic agonists in a cell-free system: resensitization by guanosine 5’-(beta gamma-imino) triphosphate and other purine nucleotides. Proc Natl Acad Sci USA. 1976;73(5):1494-1498. PMID: 5723; PMCID: PMC430323. https://doi.org/10.1073/pnas.73.5.1494
  81. Karimi Khezri M, Turkkan A, Koc C, Salman B, Levent P, Cakir A, Kafa IM, Cansev M, Bekar A. Uridine treatment improves nerve regeneration and functional recovery in a rat model of sciatic nerve injury. Turk Neurosurg. 2021 Dec 13. Epub ahead of print. PMID: 35652178. https://doi.org/10.5137/1019-5149.JTN.36142-21.2
  82. Lecca D, Ceruti S. Uracil nucleotides: from metabolic intermediates to neuroprotection and neuroinflammation. Biochem Pharmacol. 2008 May 15;75(10):1869-1881. Epub 2008 Jan 03. PMID: 18261711. https://doi.org/10.1016/j.bcp.2007.12.009
  83. Yakupov EZ, Troshina JV, Gainutdinova RR, Kashapova AO. The results of a study on the safety of the dietary supplement neurouridine in patients with nonspecific low back pain (MULTINEURO-2). S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(3):52-56. (In Russ.). https://doi.org/10.17116/jnevro202112103152
  84. van Groeningen CJ, Leyva A, Kraal I, Peters GJ, Pinedo HM. Clinical and pharmacokinetic studies of prolonged administration of high-dose uridine intended for rescue from 5-FU toxicity. Cancer Treat Rep. 1986 June;70(6):745-750. PMID: 3731137.
  85. Peters GJ, van Groeningen CJ, Laurensse E, Kraal I, Leyva A, Lankelma J, Pinedo HM. Effect of pyrimidine nucleosides on body temperatures of man and rabbit in relation to pharmacokinetic data. Pharm Res. 1987 Apr;4(2):113-119. PMID: 3151015. https://doi.org/10.1023/a:1016410817898
  86. Soininen H, Solomon A, Visser PJ, Hendrix SB, Blennow K, Kivipelto M, Hartmann T; LipiDiDiet clinical study group. 24-month intervention with a specific multinutrient in people with prodromal Alzheimer’s disease (LipiDiDiet): a randomised, double-blind, controlled trial. Lancet Neurol. 2017 Dec;16(12):965-975. Epub 2017 Oct 30. PMID: 29097166; PMCID: PMC5697936. https://doi.org/10.1016/S1474-4422(17)30332-0
  87. Soininen H, Solomon A, Visser PJ, Hendrix SB, Blennow K, Kivipelto M, Hartmann T; LipiDiDiet clinical study group. 36-month LipiDiDiet multinutrient clinical trial in prodromal Alzheimer’s disease. Alzheimers Dement. 2021 Jan;17(1):29-40. Epub 2020 Sept 13. Erratum in: Alzheimers Dement. 2021 May;17(5):909. PMID: 32920957; PMCID: PMC7821311. https://doi.org/10.1002/alz.12346
  88. Calderón-Ospina CA, Nava-Mesa MO. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther. 2020 Jan;26(1):5-13. Epub 2019 Sept 06. PMID: 31490017; PMCID: PMC6930825. https://doi.org/10.1111/cns.13207
  89. Kukushkin ML. Vitamins of group B (B1, B6, B12) in complex therapy of pain syndromes. Russian Journal of Pain. 2019;17(3):39-45. (In Russ.). https://doi.org/10.25731/RASP.2019.03.31

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.