The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Smorchkova A.K.

Moscow Research Practical Clinical Center for Diagnostics and Telemedicine Technologies

Khoruzhaya A.N.

Moscow Research Practical Clinical Center for Diagnostics and Telemedicine Technologies

Kremneva E.I.

Research Center of Neurology

Petryaikin A.V.

Moscow Research Practical Clinical Center for Diagnostics and Telemedicine Technologies

Machine learning technologies in CT-based diagnostics and classification of intracranial hemorrhages

Authors:

Smorchkova A.K., Khoruzhaya A.N., Kremneva E.I., Petryaikin A.V.

More about the authors

Journal: Burdenko's Journal of Neurosurgery. 2023;87(2): 85‑91

Read: 3724 times


To cite this article:

Smorchkova AK, Khoruzhaya AN, Kremneva EI, Petryaikin AV. Machine learning technologies in CT-based diagnostics and classification of intracranial hemorrhages. Burdenko's Journal of Neurosurgery. 2023;87(2):85‑91. (In Russ., In Engl.)
https://doi.org/10.17116/neiro20238702185

Recommended articles:
Arti­ficial inte­lligence in ultrasound diagnosis of thyroid nodu­les. Piro­gov Russian Journal of Surgery. 2024;(12-2):109-116
Comparison of models for prediction of spontaneous preterm birth. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):10-19
Is arti­ficial inte­lligence nece­ssary for healthcare system?. Medi­cal Technologies. Asse­ssment and Choice. 2024;(4):40-48
Challenges, problems and approaches to healthcare digi­tal technologies enha­ncement. Russian Journal of Preventive Medi­cine. 2024;(12):31-36
Arti­ficial inte­lligence-based software for digi­tal asse­ssment of repa­rative bone tissue rege­neration. Rege­nerative Biotechnologies, Preventive, Digi­tal and Predictive Medi­cine. 2025;(1):19-24

References:

  1. Cordonnier C, Demchuk A, Ziai W, Anderson CS. Intracerebral haemorrhage: current approaches to acute management. Lancet. 2018;392(10154):1257-1268. https://doi.org/10.1016/S0140-6736(18)31878-6
  2. Expert Panel on Neurologic Imaging; Salmela MB, Mortazavi S, Jagadeesan BD, Broderick DF, Burns J, Deshmukh TK, Harvey HB, Hoang J, Hunt CH, Kennedy TA, Khalessi AA, Mack W, Patel ND, Perlmutter JS, Policeni B, Schroeder JW, Setzen G, Whitehead MT, Cornelius RS, Corey AS. ACR Appropriateness Criteria® Cerebrovascular Disease. Journal of the American College of Radiology. 2017;14(5S):34-61.  https://doi.org/10.1016/j.jacr.2017.01.051
  3. Jiang B, Guo N, Ge Y, Zhang L, Oudkerk M, Xie X. Development and application of artificial intelligence in cardiac imaging. The British Journal of Radiology. 2020;93(1113):20190812. https://doi.org/10.1259/bjr.20190812
  4. Fusco R, Grassi R, Granata V, Setola SV, Grassi F, Cozzi D, Pecori B, Izzo F, Petrillo A. Artificial Intelligence and COVID-19 Using Chest CT Scan and Chest X-ray Images: Machine Learning and Deep Learning Approaches for Diagnosis and Treatment. Journal of Personalized Medicine. 2021;11(10):993.  https://doi.org/10.3390/jpm11100993
  5. Inkeaw P, Angkurawaranon S, Khumrin P, Inmutto N, Traisathit P, Chaijaruwanich J, Angkurawaranon C, Chitapanarux I. Automatic hemorrhage segmentation on head CT scan for traumatic brain injury using 3D deep learning model. Computers in Biology and Medicine. 2022;146:105530. https://doi.org/10.1016/j.compbiomed.2022.105530
  6. Phaphuangwittayakul A, Guo Y, Ying F, Dawod AY, Angkurawaranon S, Angkurawaranon C. An optimal deep learning framework for multi-type hemorrhagic lesions detection and quantification in head CT images for traumatic brain injury. Applied Intelligence. 2022;52(7):7320-7338. https://doi.org/10.1007/s10489-021-02782-9
  7. Wang X, Shen T, Yang S, Lan J, Xu Y, Wang M, Zhang J, Han X. A deep learning algorithm for automatic detection and classification of acute intracranial hemorrhages in head CT scans. Neuroimage: Clinical. 2021;32:102785. https://doi.org/10.1016/j.nicl.2021.102785
  8. Kumaravel P, Mohan S, Arivudaiyanambi J, Shajil N, Venkatakrishnan HN. A Simplified Framework for the Detection of Intracranial Hemorrhage in CT Brain Images Using Deep Learning. Current Medical Imaging. 2021;17(10):1226-1236. https://doi.org/10.2174/1573405617666210218100641
  9. Xu J, Zhang R, Zhou Z, Wu C, Gong Q, Zhang H, Wu S, Wu G, Deng Y, Xia C, Ma J. Deep Network for the Automatic Segmentation and Quantification of Intracranial Hemorrhage on CT. Frontiers in Neuroscience. 2021;14:541817. https://doi.org/10.3389/fnins.2020.541817
  10. Santhoshkumar S, Varadarajan V, Gavaskar S, Amalraj JJ, Sumathi A. Machine Learning Model for Intracranial Hemorrhage Diagnosis and Classification. Electronics. 2021;10(21):2574. https://doi.org/10.3390/electronics10212574
  11. Mansour RF, Aljehane NO. An optimal segmentation with deep learning based inception network model for intracranial hemorrhage diagnosis. Neural Computing and Applications. 2021;33(20):13831-13843. https://doi.org/10.1007/s00521-021-06020-8
  12. Ker J, Singh SP, Bai Y, Rao J, Lim T, Wang L. Image Thresholding Improves 3-Dimensional Convolutional Neural Network Diagnosis of Different Acute Brain Hemorrhages on Computed Tomography Scans. Sensors. 2019;19(9):2167. https://doi.org/10.3390/s19092167
  13. López-Pérez M, Schmidt A, Wu Y, Molina R, Katsaggelos AK. Deep Gaussian processes for multiple instance learning: Application to CT intracranial hemorrhage detection. Comput Methods Programs Biomed. 2022;219:106783. https://doi.org/10.1016/j.cmpb.2022.106783
  14. Meng F, Wang J, Zhang H, Li W. Artificial Intelligence-Enabled Medical Analysis for Intracranial Cerebral Hemorrhage Detection and Classification. Journal of Healthcare Engineering. 2022;2022:2017223. https://doi.org/10.1155/2022/2017223
  15. Schmitt N, Mokli Y, Weyland CS, Gerry S, Herweh C, Ringleb PA, Nagel S. Automated detection and segmentation of intracranial hemorrhage suspect hyperdensities in non-contrast-enhanced CT scans of acute stroke patients. European Radiology. 2022;32(4):2246-2254. https://doi.org/10.1007/s00330-021-08352-4
  16. Alis D, Alis C, Yergin M, Topel C, Asmakutlu O, Bagcilar O, Senli YD, Ustundag A, Salt V, Dogan SN, Velioglu M, Selcuk HH, Kara B, Ozer C, Oksuz I, Kizilkilic O, Karaarslan E. A joint convolutional-recurrent neural network with an attention mechanism for detecting intracranial hemorrhage on noncontrast head CT. Scientific Reports. 2022;12(1):2084. https://doi.org/10.1038/s41598-022-05872-x
  17. McLouth J, Elstrott S, Chaibi Y, Quenet S, Chang PD, Chow DS, Soun JE. Validation of a Deep Learning Tool in the Detection of Intracranial Hemorrhage and Large Vessel Occlusion. Frontiers in Neurology. 2021;12:656112. https://doi.org10.3389/fneur.2021.656112
  18. Buls N, Watté N, Nieboer K, Ilsen B, de Mey J. Performance of an artificial intelligence tool with real-time clinical workflow integration — Detection of intracranial hemorrhage and pulmonary embolism. Physical Medicine. 2021;83:154-160.  https://doi.org/10.1016/j.ejmp.2021.03.015
  19. Danilov G, Kotik K, Negreeva A, Tsukanova T, Shifrin M, Zakharova N, Batalov A, Pronin I, Potapov A. Classification of Intracranial Hemorrhage Subtypes Using Deep Learning on CT Scans. Studies in Health Technology and Informatics. 2020;272:370-373.  https://doi.org/10.3233/SHTI200572
  20. Ginat DT. Analysis of head CT scans flagged by deep learning software for acute intracranial hemorrhage. Neuroradiology. 2020;62(3):335-340.  https://doi.org/10.1007/s00234-019-02330-w
  21. Kuo W, Hӓne C, Mukherjee P, Malik J, Yuh EL. Expert-level detection of acute intracranial hemorrhage on head computed tomography using deep learning. Proceedings of the National Academy of Sciences. 2019;116(45):22737-22745. https://doi.org/10.1073/pnas.1908021116
  22. Ye H, Gao F, Yin Y, Guo D, Zhao P, Lu Y, Wang X, Bai J, Cao K, Song Q, Zhang H, Chen W, Guo X, Xia J. Precise diagnosis of intracranial hemorrhage and subtypes using a three-dimensional joint convolutional and recurrent neural network. European Radiology. 2019;29(11):6191-6201. https://doi.org/10.1007/s00330-019-06163-2
  23. Ginat D. Implementation of Machine Learning Software on the Radiology Worklist Decreases Scan View Delay for the Detection of Intracranial Hemorrhage on CT. Brain Sciences. 2021;11(7):832.  https://doi.org/10.3390/brainsci11070832
  24. O’Neill TJ, Xi Y, Stehel E, Browning T, Ng YS, Baker C, Peshock RM. Active Reprioritization of the Reading Worklist Using Artificial Intelligence Has a Beneficial Effect on the Turnaround Time for Interpretation of Head CT with Intracranial Hemorrhage. Radiology: Artificial Intelligence. 2020;3(2):e200024. https://doi.org/10.1148/ryai.2020200024
  25. Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ, Suever JD, Geise BD, Patel AA, Moore GJ. Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration. NPJ Digital Medicine. 2018;1:9.  https://doi.org/10.1038/s41746-017-0015-z
  26. Choy G, Khalilzadeh O, Michalski M, Do S, Samir AE, Pianykh OS, Geis JR, Pandharipande PV, Brink JA, Dreyer KJ. Current Applications and Future Impact of Machine Learning in Radiology. Radiology. 2018;288(2):318.  https://doi.org/10.1148/RADIOL.2018171820
  27. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, Tse D, Etemadi M, Ye W, Corrado G, Naidich DP, Shetty S. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nature Medicine. 2019;25(6):954-961.  https://doi.org/10.1038/s41591-019-0447-x
  28. Flanders AE, Prevedello LM, Shih G, Halabi SS, Kalpathy-Cramer J, Ball R, Mongan JT, Stein A, Kitamura FC, Lungren MP, Choudhary G, Cala L, Coelho L, Mogensen M, Morón F, Miller E, Ikuta I, Zohrabian V, McDonnell O, Lincoln C, Shah L, Joyner D, Agarwal A, Lee RK, Nath J; RSNA-ASNR 2019 Brain Hemorrhage CT Annotators. Construction of a Machine Learning Dataset through Collaboration: The RSNA 2019 Brain CT Hemorrhage Challenge. Radiology: Artificial Intelligence. 2020;2(3):e190211. https://doi.org/10.1148/ryai.2020190211
  29. Huang J, Ling CX. Using AUC and accuracy in evaluating learning algorithms. IEEE Transactions on Knowledge and Data Engineering. 2005;17(3):299-310.  https://doi.org/10.1109/tkde.2005.50
  30. Brown JB. Classifiers and their metrics quantified. Molecular Informatics. 2018;37(1-2):1700127. https://doi.org/10.1002/minf.201700127
  31. Pavlov NA, Andreychenko AE, Vladzymyrskyy A V., Revazyan AA, Kirpichev YS, Morozov SP. Reference medical datasets (MosMedData) for independent external evaluation of algorithms based on artificial intelligence in diagnostics. Digital Diagnostics. 2021;2(1):49-66.  https://doi.org/10.17816/dd60635
  32. Zhao X, Chen K, Wu G, Zhang G, Zhou X, Lv C, Wu S, Chen Y, Xie G, Yao Z. Deep learning shows good reliability for automatic segmentation and volume measurement of brain hemorrhage, intraventricular extension, and peripheral edema. European Radiology. 2021;31(7):5012-5020. https://doi.org/10.1007/s00330-020-07558-2
  33. Li D, Ma L, Li J, Qi S, Yao Y, Teng Y. A comprehensive survey on deep learning techniques in CT image quality improvement. Medical and Biological Engineering and Computing. 2022;60(10):2757-2770. https://doi.org/10.1007/s11517-022-02631-y
  34. Nacional’nyj standart Rossijskoj Federacii GOST R 59921.1-2022 Sistemy iskusstvennogo intellekta v klinicheskoj medicine. Chast’ 1. Klinicheskaja ocenka. M. 2022  https://allgosts.ru/11/040/gost_r_59921.1-2022.pdf
  35. Lee H, Yune S, Mansouri M, Kim M, Tajmir SH, Guerrier CE, Ebert SA, Pomerantz SR, Romero JM, Kamalian S, Gonzalez RG, Lev MH, Do S. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nature Biomedical Engineering. 2019;3:173-182.  https://doi.org/10.1038/s41551-018-0324-9
  36. Mutasa S, Sun S, Ha R. Understanding artificial intelligence based radiology studies: What is overfitting? Clinical Imaging. 2020;65:96-99.  https://doi.org/10.1016/j.clinimag.2020.04.025
  37. Chilamkurthy S, Ghosh R, Tanamala S, Biviji M, Campeau NG, Venugopal VK, Mahajan V, Rao P, Warier P. Deep learning algorithms for detection of critical findings in head CT scans: a retrospective study. Lancet. 2018;392(10162):2388-2396. https://doi.org/10.1016/S0140-6736(18)31645-3
  38. Zech JR, Badgeley MA, Liu M, Costa AB, Titano JJ, Oermann EK. Confounding variables can degrade generalization performance of radiological deep learning models. PLoS Med. 2018;15(11):e1002683. https://doi.org/10.1371/journal.pmed.1002683
  39. Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology. 2018;286(3):800-809.  https://doi.org/10.1148/radiol.2017171920
  40. Kulberg NS, Reshetnikov RV, Novik VP, Elizarov AB, Gusev MA, Gombolevskiy VA, Vladzymyrskyy AV, Morozov SP. Inter-observer variability between readers of CT images: all for one and one for all. Digital Diagnostics. 2021;2(2):105-118.  https://doi.org/10.17816/DD60622
  41. Artificial Intelligence in radiology. mosmed.ai. Accessed December 13, 2022. https://mosmed.ai/
  42. Morozov SP, Vladzimirskyy AV, Ledihova NV, Andreychenko AE, Arzamasov KM, Balanyuk EA, Gombolevskij VA, Ermolaev SO, Zhivodenko VS, Idrisov IM, Kirpichev YuS, Logunova TA, Nuzhdina VA, Omelyanskaya OV, Rakovchen VG, Slepushkina AV. Moscow experiment on computer vision in radiology: involvement and participation of radiologists. Vrach I informacionnye tekhnologii. 2020;4:14-23. (In Russ.). https://doi.org/10.37690/1811-0193-2020-4-14-23

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.