Долотова Д.Д.

ООО «Гаммамед-Софт», Москва, Россия

Благосклонова Е.Р.

ООО «Гаммамед-Софт», Москва, Россия

Григорьева Е.В.

ФГБУ «Федеральный Центр травматологии, ортопедии и эндопротезирования» Минздрава России, Чебоксары, Россия

Архипов И.В.

Московский государственный университет им. Н.В. Ломоносова, Москва, Россия

Полунина Н.А.

Научно-исследовательский институт скорой помощи им. Н.В. Склифосовского, Москва

Гаврилов А.В.

Московский государственный университет им. Н.В. Ломоносова, Москва, Россия

Крылов В.В.

ФГБУ МРНЦ Минздрава России, Обнинск

Исследование локальной гемодинамики в сложных аневризмах: влияние сосуда, отходящего от купола или шейки

Авторы:

Долотова Д.Д., Благосклонова Е.Р., Григорьева Е.В., Архипов И.В., Полунина Н.А., Гаврилов А.В., Крылов В.В.

Подробнее об авторах

Прочитано: 2096 раз


Как цитировать:

Долотова Д.Д., Благосклонова Е.Р., Григорьева Е.В., Архипов И.В., Полунина Н.А., Гаврилов А.В., Крылов В.В. Исследование локальной гемодинамики в сложных аневризмах: влияние сосуда, отходящего от купола или шейки. Журнал «Вопросы нейрохирургии» имени Н.Н. Бурденко. 2020;84(3):28‑34.
Dolotova DD, Blagosklonova ER, Grigorieva ЕV, Arkhipov IV, Polunina NA, Gavrilov AV, Krylov VV. Analysis of local hemodynamics in complex aneurysms: an effect of the vessel arising from the dome or the neck. Burdenko's Journal of Neurosurgery. 2020;84(3):28‑34. (In Russ., In Engl.)
https://doi.org/10.17116/neiro20208403128

Рекомендуем статьи по данной теме:
Чис­лен­ное мо­де­ли­ро­ва­ние де­фор­ма­ции на­пол­нен­но­го мо­че­во­го пу­зы­ря че­ло­ве­ка под ста­ти­чес­кой наг­руз­кой. Опе­ра­тив­ная хи­рур­гия и кли­ни­чес­кая ана­то­мия (Пи­ро­гов­ский на­уч­ный жур­нал). 2024;(4-2):5-15

Список сокращений

ВСА — внутренняя сонная артерия

ИА — интракраниальная аневризма

КТ-ангиография — компьютерная томография сосудов

ПМА — передняя мозговая артерия

СМА — средняя мозговая артерия

Vps — пиковая систолическая скорость

WSS — пристеночное напряжение сдвига (Wall shear stress)

По данным различных авторов, частота неразор-вавшихся интракраниальных аневризм (ИА) в популяции составляет в среднем 3,2% [1]. Оценка риска разрыва ИА и принятие решения об операции вызывают наибольшие трудности при выявлении так называемых «сложных» аневризм. Это понятие до сих пор является не вполне определенным [2]. Отсутствие общепринятых подходов в оценке сложности ИА заставляет определять риск разрыва у каждого пациента индивидуально. В то же время морфология аневризм не может не оказывать влияния на изменение локальной гемодинамики, включающей гемодинамику в самой аневризме и близлежащих сосудах. Изучение локальной гемодинамики возможно с помощью методов математического моделирования на основе построения трехмерных реконструкций. Для точной оценки риска разрыва ИА следует также учитывать состояние центральной гемодинамики пациента, в том числе наличие артериальной гипертонии [1]. Несмотря на то что большинство авторов согласны с тем, что элементом сложной аневризмы может считаться наличие сосуда, отходящего от купола или пришеечной части [3, 4], работы, посвященные анализу гемодинамики в подобных аневризмах, в настоящее время в литературе не представлены, что и определило цель нашего исследования.

Цель исследования — изучить гемодинамические особенности ИА с отходящим от их купола или шейки сосудом в зависимости от их строения и скорости кровотока в несущем сосуде.

Материал и методы

В ходе работы использованы DICOM данные компьютерной томографии сосудов (КТ-ангиографии) четырех пациентов (рис. 1). Аневризмы находились на разных участках виллизиева круга: в супраклиноидном отделе внутренней сонной артерии (ВСА), в области передней мозговой (ПМА) и передней соединительной артерии, а также в области бифуркации средней мозговой артерии (СМА).

Рис. 1. 3D-реконструкция аневризм по DICOM-изображениям, полученным в результате компьютерной томографии сосудов.
Белой стрелкой указан сосуд, отходящий от шейки или купола аневризмы.


Морфометрические показатели аневризм представлены в табл. 1.

Таблица 1. Морфометрические показатели аневризм обследованных пациентов


Примечание. ПСА — передняя соединительная артерия; СМА — средняя мозговая артерия; ВСА — внутренняя сонная артерия.

Для создания трехмерных пациент-специфических моделей использовали аппаратно-программный комплекс «Гамма Мультивокс». С целью изучения влияния отходящего от аневризмы сосуда исходные модели ИА модифицированы: для всех аневризм выполнено виртуальное «удаление» отходящего сосуда. Кроме того, для исследования поведения гемодинамических параметров в зависимости от объема аневризмы модели аневризм пациентов 3 и 4 изменены в размере. Таким образом, построено 12 трехмерных моделей аневризм (рис. 2). Готовые модели экспортированы в модуль для решения задач гидродинамики ANSYS CFX, входящий в состав программного комплекса ANSYS Workbench 19 (ANSYS, Inc., США). Расчет производился путем численного интегрирования уравнений непрерывности и Навье—Стокса методом конечных элементов. В данном исследовании стенки сосудов считались жесткими, кровь — однородной несжимаемой ньютоновской жидкостью с постоянными плотностью 1060 кг/м3 и вязкостью 0,0039 Па∙с, что является допустимым при моделировании кровотока в относительно крупных и ригидных артериях головного мозга. Значения линейной скорости потока, подаваемого на вход модели, соответствовали значениям, получаемым при ультразвуковой допплерографии здорового человека. Значения пиковой систолической скорости (Vps) для ВСА, ПМА и СМА составили 100, 85 и 60 см/с соответственно. Кроме того, для оценки влияния патологического увеличения скорости потока для каждого случая проведен расчет с модифицированными значениями входной скорости (Vps=150 см/с). Время симуляции соответствовало трем сердечным циклам.

Рис. 2. Трехмерные модели аневризм.
Нижний ряд соответствует модификациям моделей без отходящего сосуда. Для пациентов 3 и 4 дополнительно выполнена модификация размера аневризмы.


В процессе постобработки оценены распределения давлений, скоростей и пристеночных напряжений сдвига (Wall shear stress, WSS). Особенное внимание уделялось анализу изменения распределения WSS на куполе аневризмы, поскольку этот параметр регулирует функции эндотелия и играет значительную роль в процессе роста и разрыва ИА [5]. В окрестности областей с максимальными значениями WSS и давления оценена скорость роста этих показателей. С этой целью использовалась новая форма представления результатов анализа в виде графиков, по оси абсцисс которых обозначалась площадь исследуемого участка, а по оси ординат — значения гемодинамических показателей, достигаемые на данном участке. При этом высота описывает величину вариации гемодинамического параметра в окрестности точки максимума. При большей вариации параметра на участке стенки аневризмы она претерпевает более резкие изменения.

Результаты

При изучении характера изменения потока в полости аневризмы в результате виртуального «удаления» дополнительного сосуда выявлено, что для трех из четырех пациентов «удаление» сосуда не приводило к значительным изменениям характера потока крови (рис. 3). Резкое сокращение интенсивности потока наблюдалось только у пациента 3, причем вне зависимости от размера аневризматического мешка.

Рис. 3. Профиль скоростей до удаления сосуда (верхний ряд моделей) и после удаления сосуда (нижний ряд моделей), м/с.
Черной точкой обозначена локализация максимальных значений пристеночного напряжения сдвига.


В соответствии с характером поведения потоков наблюдалось и изменение WSS (рис. 4). У пациентов 2 и 4 общая картина варьирования WSS на куполе аневризмы не изменялась после «удаления» сосуда. У пациента 3 в связи с резким сокращением потоков крови в полости аневризматического мешка отмечено и выраженное снижение значений WSS на его поверхности.

Рис. 4. Распределение пристеночного напряжения сдвига до «удаления» сосуда (верхний ряд моделей) и после «удаления» сосуда (нижний ряд моделей), Па.
Черной точкой обозначена локализация максимальных значений пристеночного напряжения сдвига.


У пациента 1 также отмечено, что в точке гемодинамического удара, которая находилась близко к месту отхождения дополнительного сосуда, ранее высокие значения WSS, вызванные ускорением потока, стремящегося в относительно узкий сосуд, после его виртуального «удаления» снижались. Для всех моделей характерно то, что расположение точки максимального значения WSS практически не изменялось после виртуального «удаления» сосуда. Анализ скорости изменения WSS в окрестности этих точек выявил, что при снижении интенсивности потока в полости аневризмы наблюдается не только уменьшение абсолютных показателей, но и их вариации (рис. 5). Так, например, для пациента 3 в модели с исходной анатомией значения WSS на участке площадью 25 мм2 варьировали от 6,2 до 15 Па. В результате «удаления» сосуда эта разница в 8,8 Па снижалась почти в 2 раза.

Рис. 5. Сравнение вариации показателей пристеночного напряжения сдвига в области точки максимума в зависимости от скорости кровотока в несущем сосуде (Пациент 3).
Ширина основания кривых на графиках равна рассматриваемой площади на куполе аневризмы, положение относительно оси ординат соответствует величине напряжения сдвига на исследуемом участке. WSS — пристеночное напряжение сдвига.


Моделирование ситуации с высокими значениями входной скорости потока (Vps=150 см/с), наблюдающейся, например, при гипертоническом кризе, выявило, что пристеночное напряжение сдвига в области гемодинамического удара не просто увеличивается в абсолютных значениях, но и характеризуется наиболее резким ростом. Так, у пациента 1 увеличение скорости входного потока приводило к тому, что на том же участке купола стенка аневризмы претерпевала более выраженные изменения WSS, чем при нормальной скорости потока (вариация WSS увеличилась в 2 раза: с 30 до 60 Па для модели с исходной анатомией и с 10 до 20 Па для модели с «виртуальным удалением» сосуда). Подобное изменение вариации пристеночного напряжения сдвига отмечено для всех 12 моделей (табл. 2).

Таблица 2. Изменение вариации WSS при нормальной и патологической входных скоростях для моделей с исходной анатомией (верхний ряд) и моделей с «удаленным» сосудом (нижний ряд), Па


В то же время изучение изменения давления при «удалении» сосуда показало, что для всех построенных моделей отмечалось увеличение значений давления на куполе аневризмы, однако его распределение в области гемодинамического удара варьировало в пределах 3—10%.

Обсуждение

В исследование, направленное на изучение влияния сосуда, отходящего от купола или шейки ИА, на локальную гемодинамику вошли модели четырех аневризм различной локализации и размеров. Выбор ИА, различающихся по своей геометрии и морфометрическим показателям, сделан авторами намеренно. Целью такого подхода является выявление в изменении гемодинамических показателей как общих для всех аневризм признаков, так и их индивидуальных особенностей, вызванных виртуальным «удалением» сосуда.

Эта ситуация может соответствовать интра-операционной в случае необходимости выполнения так называемого временного треппинга с наложением клипс не только на несущую артерию, но и на артерии, выходящие из купола или шейки аневризмы (эфферентные артерии). Это необходимо для работы в «сухом поле», а также на первом этапе хирургического вмешательства при выполнении анастомоза между артерией, отходящей от тела аневризмы (артерия-реципиент), и артерией-донором, когда аневризма продолжает заполняться кровью из несущего сосуда. В ходе работы выполнены гидродинамические расчеты для 12 трехмерных моделей аневризм, после чего проанализировано распределение таких гидродинамических показателей, как профиль скоростей, пристеночное напряжение сдвига (WSS) и давление на стенке ИА. После «удаления» сосуда изменение профиля скоростей было неоднозначным: на моделях пациентов 1, 2 и 4 это не приводило к значительному изменению направления и силы потока. В то же время на модели пациента 3, вне зависимости от размеров ИА, «удаление» сосуда приводило к резкому снижению интенсивности потока в полости аневризматического мешка, что определяло и снижение значений WSS. Данное наблюдение может быть объяснено тем, что проанализированные модели отличались диаметром сосуда, который подвергался удалению, относительно размера шейки аневризмы. У пациентов 1 и 2 сравнительно небольшая часть потока уходила в «удаляемую» артерию: площадь сечения отходящего сосуда была в 6,5 раз меньше площади просвета в области шейки, в то время как модель пациента 3 характеризовалась более широким просветом отходящего сосуда относительно шейки аневризмы.

Кроме того, важную роль, бесспорно, играет положение ИА относительно несущего сосуда: из-за бифуркационного расположения аневризмы у пациента 4 поток в полости аневризматического мешка после «удаления» сосуда практически не изменялся. В результате этого наблюдалось одинаковое напряжение сдвига у моделей с сосудом и без него. Таким образом, при выборе тактики лечения ИА, на куполе или шейке которой есть дополнительный сосуд, необходимо учитывать не только анатомические особенности ИА, но и ее гемодинамический портрет.

Интересным результатом работы является выявление поведения напряжения сдвига в области гемодинамического удара при высоких скоростях входного потока, имитирующих артериальную гипертонию или ангиоспазм. На всех моделях увеличение скорости потока в несущем сосуде приводило не только к увеличению значения WSS в точке максимума, но и к увеличению вариации значений в окрестности этой точки. На небольшом участке купола аневризмы WSS могло резко возрасти, почти в 3 раза, по сравнению с остальной частью аневризмы. Выявленная закономерность может объяснять тот факт, что разрыв аневризм чаще всего наблюдается на фоне повышенного давления: именно в этой ситуации стенка ИА испытывает максимальный перепад WSS. Поведение давления на всех моделях имело сходные тенденции: «удаление» сосуда во всех случаях приводило к его незначительному возрастанию, однако оно носило более равномерный характер.

Заключение

Результаты исследования позволяют заключить, что наличие сосуда, отходящего от шейки или купола интракраниальных аневризм, обусловливает отнесение их к группе «сложных» не только из-за трудностей выполнения хирургического вмешательства, но и в силу того, что наличие дополнительной сосудистой ветви и ее выключение из кровотока могут оказывать значительное влияние на изменение параметров локальной гемодинамики. Характер этих изменений может определяться такими факторами, как диаметр отходящего от аневризмы сосуда и расположение аневризмы относительно несущего сосуда. В меньшей степени подвержены изменениям гемодинамические показатели бифуркационных интракраниальных аневризм: виртуальное «удаление» сосуда оказывало незначительное влияние на стенку шейки и купола аневризматического мешка, находящегося на пути потока из несущего сосуда. В латеральных интракраниальных аневризмах поведение профиля скоростей и пристеночного напряжения сдвига отличалось бо́льшим разнообразием, для объяснения которого необходимо учитывать всю совокупность местных и системных факторов.

Дальнейшие исследования в этом направлении помогут выявить закономерности, необходимые в принятии таких интраоперационных решений, как последовательность наложения и снятия временных клипс, а также могут быть полезными при планировании типа операции (реваскуляризация, сложное клипирование или комбинированное вмешательство) в хирургии сложных аневризм.

Участие авторов

Концепция и дизайн исследования — А.Г., В.К., Н.П.

Сбор и обработка материала — Е.Г., Н.П.

Написание текста — Д.Д., Е.Г., Е.Б.

Редактирование — А.Г., В.К., Н.П.

Авторы заявляют об отсутствии конфликта интересов.

Комментарий

Работа посвящена исследованию гемодинамики в аневризме у пациентов с неразорвавшимися аневризмами. Авторы исследовали локальную гемодинамику в ситуациях, когда сосуд отходил от шейки или тела (в терминологии авторов — купола) аневризмы. Безусловно, такие аневризмы относятся к сложным в отношении тактики хирургического лечения. В то же время риски, возникающие при естественном течении таких аневризм, до конца не изучены и исследования в этом направлении, особенно с использованием методов компьютерного моделирования, достаточно интересны и востребованы. Часть работы, посвященная поведению напряжения сдвига в области гемодинамического удара при высоких скоростях входного потока, подтверждает известную информацию о том, что артериальная гипертония и вазоспазм сопряжены с более высоким риском разрыва аневризмы.

Не совсем ясна модель исследования, касающаяся «виртуального удаления сосуда». Для чего это делается? Возможно, это имеет значение для больших и гигантских аневризм с признаками тромбирования, в которых после разрыва и кровоизлияния или самопроизвольно может произойти тромбирование отходящей от аневризмы ветви. Такая ситуация, помимо возможных ишемических нарушений, может привести к изменениям гемодинамики в аневризме и обусловить ее полный тромбоз, или, наоборот, ее увеличение и разрыв.

Для ответа на эти вопросы, бесспорно, требуются дальнейшие исследования в этом направлении, которые, возможно, помогут выявить критерии более точного прогноза риска естественного течения сложных интракраниальных аневризм, включающих устья питающих мозг артерий.

Ю.В. Пилипенко (Москва)

Литература / References:

  1. Thompson B, Brown R, Amin-Hanjani S, Broderick J, Cockroft K, Connolly E, Duckwiler G, Harris C, Howard V, Johnston S, Meyers P, Molyneux A, Ogilvy C, Ringer A, Torner J. Guidelines for the Management of Patients with Unruptured Intracranial Aneurysms. Stroke. 2015;46(8):2368-2400. https://doi.org/10.1161/STR.0000000000000070
  2. Крылов В.В., Полунина Н.А., Лукьянчиков В.А., Григорьева Е.В., Гусейнова Г.К. Успешное выключение из кровотока сложной аневризмы средней мозговой артерии с применением комбинированного реваскуляризирующего вмешательства. Вопросы нейрохирургии им. Н.Н. Бурденко. 2016;80(2):63-71. https://doi.org/10.17116/neiro201680263-71
  3. Sekhar L, Natarajan S, Ellenbogen R, Ghodke B. Cerebral Revascularization for Ischemia, Aneurysms, and Cranial Base Tumors. Neurosurgery. 2008;6(2 (Suppl 3):1373-1410. https://doi.org/10.1227/01.neu.0000333803.97703.c6
  4. Ajiboye N, Chalouhi N, Starke R, Zanaty M, Bell R. Unruptured Cerebral Aneurysms: Evaluation and Management. The Scientific World Journal. 2015;954954. https://doi.org/10.1155/2015/954954
  5. Dolan J, Kolega J, Meng H. High Wall Shear Stress and Spatial Gradients in Vascular Pathology: A Review. Annals of Biomedical Engineering. 2012;41(7):1411-1427. https://doi.org/10.1007/s10439-012-0695-0

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.