The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Gareeva A.E.

Institute of Biochemistry and Genetics of the Ufa Federal Research Center of the Russian Academy of Sciences;
Kemerovo State University;
Russian Medical Academy of Continuing Professional Education

Borodina L.S.

Republican Narcological Dispensary No. 1

Pozdnyakov S.A.

Moscow Scientific and Practical Center for Narcology of the Moscow Health Department

Timerbulatov I.F.

Russian Medical Academy of Continuing Professional Education;
Usoltsev Central Clinical Psychiatric Hospital;
Russian University of Medicine

Pharmacogenomic and pharmacometabolomic biomarkers of the efficacy and safety of antidepressants: focus on selective serotonin reuptake inhibitors

Authors:

Gareeva A.E., Borodina L.S., Pozdnyakov S.A., Timerbulatov I.F.

More about the authors

Read: 1444 times


To cite this article:

Gareeva AE, Borodina LS, Pozdnyakov SA, Timerbulatov IF. Pharmacogenomic and pharmacometabolomic biomarkers of the efficacy and safety of antidepressants: focus on selective serotonin reuptake inhibitors. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(6):26‑35. (In Russ.)
https://doi.org/10.17116/jnevro202412406126

Recommended articles:
Pathogenetic inte­rrelations of hypo­gonadism and depression in men. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(1):17-23
Oxidative stress and depression in Parkinson’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(9):131-138
Anti­depressants as addi­tional drugs for human brain gliomas. Burdenko's Journal of Neurosurgery. 2024;(6):97-102
Psychodermatological aspe­cts of psoriasis, current condition of problem. Russian Journal of Clinical Dermatology and Vene­reology. 2025;(4):403-411

References:

  1. Tansey KE, Guipponi M, Hu X, et al. Contribution of common genetic variants to antidepressant response. Biol Psychiatry. 2013;73(7):679-682.  https://doi.org/10.1016/j.biopsych.2012.10.030
  2. Campos AI, Byrne EM, Mitchell BL, et al. Impact of CYP2C19 metaboliser status on SSRI response: a retrospective study of 9500 participants of the Australian Genetics of Depression Study. Pharmacogenomics J. 2022;22(2):130-135.  https://doi.org/10.1038/s41397-022-00267-7
  3. Kessler RC, van Loo HM, Wardenaar KJ, et al. Using patient self-reports to study heterogeneity of treatment effects in major depressive disorder. Epidemiol Psychiatr Sci. 2017;26(1):22-36.  https://doi.org/10.1017/S2045796016000020
  4. Roughan WH, Campos AI, García-Marín LM, et al. Comorbid Chronic Pain and Depression: Shared Risk Factors and Differential Antidepressant Effectiveness. Front Psychiatry. 2021;12:643609. https://doi.org/10.3389/fpsyt.2021.643609
  5. Campos AI, Mulcahy A, Thorp JG, et al. Understanding genetic risk factors for common side effects of antidepressant medications. Commun Med (Lond). 2021;1:45.  https://doi.org/10.1038/s43856-021-00046-8
  6. Bråten LS, Haslemo T, Jukic MM, et al. Impact of CYP2C19 genotype on sertraline exposure in 1200 Scandinavian patients. Neuropsychopharmacology. 2020;45(3):570-576.  https://doi.org/10.1038/s41386-019-0554-x
  7. Brunoni AR, Carracedo A, Amigo OM, et al. Association of BDNF, HTR2A, TPH1, SLC6A4, and COMT polymorphisms with tDCS and escitalopram efficacy: ancillary analysis of a double-blind, placebo-controlled trial. Braz J Psychiatry. 2020;42(2):128-135.  https://doi.org/10.1590/1516-4446-2019-0620
  8. Stein DJ, Craske MG, Rothbaum BO, et al. The clinical characterization of the adult patient with an anxiety or related disorder aimed at personalization of management. World Psychiatry. 2021;20(3):336-356.  https://doi.org/10.1002/wps.20919
  9. Porcelli S, Fabbri C, Serretti A. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol. 2012; 22(4):239-258.  https://doi.org/10.1016/j.euroneuro.2011.10.003
  10. Zou Z, Huang Y, Wang J, Min W, Zhou B. The association between serotonin-related gene polymorphisms and susceptibility and early sertraline response in patients with panic disorder. BMC Psychiatry. 2020;20(1):388.  https://doi.org/10.1186/s12888-020-02790-y
  11. Stäuble CK, Lampert ML, Mikoteit T, et al. Pharmacogenetic-Guided Antidepressant Selection as an Opportunity for Interprofessional Collaboration: A Case Report. Life (Basel). 2021;11(7):673.  https://doi.org/10.3390/life11070673
  12. Maron E, Tammiste A, Kallassalu K, et al. Serotonin transporter promoter region polymorphisms do not influence treatment response to escitalopram in patients with major depression. Eur Neuropsychopharmacol. 2009;19(6):451-456.  https://doi.org/10.1016/j.euroneuro.2009.01.010
  13. Sarmiento-Hernández EI, Ulloa-Flores RE, Camarena-Medellín B, et al. Association between 5-HTTLPR polymorphism, suicide attempt and comorbidity in Mexican adolescents with major depressive disorder. Actas Esp Psiquiatr. 2019;47(1):1-6. 
  14. Zhu J, Klein-Fedyshin M, Stevenson JM. Serotonin Transporter Gene Polymorphisms and Selective Serotonin Reuptake Inhibitor Tolerability: Review of Pharmacogenetic Evidence. Pharmacotherapy. 2017;37(9):1089-1104. https://doi.org/10.1002/phar.1978
  15. Ren F, Ma Y, Zhu X, et al. Pharmacogenetic association of bi- and triallelic polymorphisms of SLC6A4 with antidepressant response in major depressive disorder. J Affect Disord. 2020;1(273):254-264.  https://doi.org/10.1016/j.jad.2020.04.058
  16. Bousman CA, Stevenson JM, Ramsey LB, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A Genotypes and Serotonin Reuptake Inhibitor Antidepressants. Clin Pharmacol Ther. 2023;114(1):51-68.  https://doi.org/10.1002/cpt.2903
  17. Gassó P, Blázquez A, Rodríguez N, et al. Further Support for the Involvement of Genetic Variants Related to the Serotonergic Pathway in the Antidepressant Response in Children and Adolescents After a 12-Month Follow-Up: Impact of the HTR2A rs7997012 Polymorphism. J Child Adolesc Psychopharmacol. 2018;28(10):711-718.  https://doi.org/10.1089/cap.2018.0004
  18. Sun Y, Tao S, Tian S, et al. Serotonin 2A receptor polymorphism rs3803189 mediated by dynamics of default mode network: a potential biomarker for antidepressant early response. J Affect Disord. 2021;283:130-138.  https://doi.org/10.1016/j.jad.2021.01.047
  19. Gaedigk A, Sangkuhl K, Whirl-Carrillo M, et al. Prediction of CYP2D6 phenotype from genotype across world populations. Genet Med. 2017;19(1):69-76.  https://doi.org/10.1038/gim.2016.80
  20. Dong ZQ, Li XR, He L, et al. 5-HTR1A and 5-HTR2A genetic polymorphisms and SSRI antidepressant response in depressive Chinese patients. Neuropsychiatr Dis Treat. 2016;12:1623-1629. https://doi.org/10.2147/NDT.S93562
  21. Kao CF, Kuo PH, Yu YW, et al. Gene-Based Association Analysis Suggests Association of HTR2A With Antidepressant Treatment Response in Depressed Patients. Front Pharmacol. 2020;11:559601. https://doi.org/10.3389/fphar.2020.559601
  22. Oz MD, Baskak B, Uckun Z, et al. Association between serotonin 2A receptor (HTR2A), serotonin transporter (SLC6A4) and brain-derived neurotrophic factor (BDNF) gene polymorphisms and citalopram/sertraline induced sexual dysfunction in MDD patients. Pharmacogenomics J. 2020;20(3):443-450.  https://doi.org/10.1038/s41397-019-0127-8
  23. Wan YS, Zhai XJ, Tan HA, et al. Associations between the 1438A/G, 102T/C, and rs7997012G/A polymorphisms of HTR2A and the safety and efficacy of antidepressants in depression: a meta-analysis. Pharmacogenomics J. 2021;21(2):200-215.  https://doi.org/10.1038/s41397-020-00197-2
  24. Secher A, Bukh J, Bock C, et al. Antidepressive-drug-induced bodyweight gain is associated with polymorphisms in genes coding for COMT and TPH1. Int Clin Psychopharmacol. 2009;24(4):199-203.  https://doi.org/10.1097/YIC.0b013e32832d6be2
  25. Yohn CN, Shifman S, Garino A, et al. Fluoxetine effects on behavior and adult hippocampal neurogenesis in female C57BL/6J mice across the estrous cycle. Psychopharmacology (Berl). 2020;237(5):1281-1290. https://doi.org/10.1007/s00213-020-05456-5
  26. Ochi T, Vyalova NM, Losenkov IS, et al. Limited Associations Between 5-HT Receptor Gene Polymorphisms and Treatment Response in Antidepressant Treatment-Free Patients With Depression. Front Pharmacol. 2019;10:1462. https://doi.org/10.3389/fphar.2019.01462
  27. Scutt G, Overall A, Scott R, et al. Does the 5-HT1A rs6295 polymorphism influence the safety and efficacy of citalopram therapy in the oldest old? Ther Adv Drug Saf. 2018;9(7):355-366.  https://doi.org/10.1177/2042098618770620
  28. Villafuerte SM, Vallabhaneni K, Sliwerska E, et al. SSRI response in depression may be influenced by SNPs in HTR1B and HTR1A. Psychiatr Genet. 2009;19(6):281-291.  https://doi.org/10.1097/YPG.0b013e32832a506e
  29. Kato M, Fukuda T, Wakeno M, et al. Effect of 5-HT1A gene polymorphisms on antidepressant response in major depressive disorder. Am J Med Genet B Neuropsychiatr Genet. 2009;150B(1):115-123.  https://doi.org/10.1002/ajmg.b.30783
  30. Pain O, Hodgson K, Trubetskoy V, et al. Identifying the Common Genetic Basis of Antidepressant Response. Biol Psychiatry Glob Open Sci. 2022;2(2):115-126.  https://doi.org/10.1016/j.bpsgos.2021.07.008
  31. Cipriani A, Furukawa TA, Salanti G, et al. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 2018;391(10128):1357-1366. https://doi.org/10.1016/S0140-6736(17)32802-7
  32. Lundmark J, Reis M, Bengtsson F. Therapeutic drug monitoring of sertraline: variability factors as displayed in a clinical setting. Ther Drug Monit. 2000;22(4):446-454.  https://doi.org/10.1097/00007691-200008000-00014
  33. Hedayati SS, Gregg LP, Carmody T, et al. Effect of Sertraline on Depressive Symptoms in Patients With Chronic Kidney Disease Without Dialysis Dependence: The CAST Randomized Clinical Trial. JAMA. 2017;318(19):1876-1890. https://doi.org/10.1001/jama.2017.17131
  34. Reis M, Aberg-Wistedt A, Agren H, et al. Serum disposition of sertraline, N-desmethylsertraline and paroxetine: a pharmacokinetic evaluation of repeated drug concentration measurements during 6 months of treatment for major depression. Hum Psychopharmacol. 2004;19(5):283-291.  https://doi.org/10.1002/hup.599
  35. Eap CB, Gründer G, Baumann P, et al. Tools for optimising pharmacotherapy in psychiatry (therapeutic drug monitoring, molecular brain imaging and pharmacogenetic tests): focus on antidepressants. World J Biol Psychiatry. 2021;22(8):561-628.  https://doi.org/10.1080/15622975.2021.1878427
  36. Kirchheiner J, Brøsen K, Dahl ML, et al. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages Acta Psychiatr Scand. 2001;104(3):173-192.  https://doi.org/10.1034/j.1600-0447.2001.00299.x
  37. Jukić MM, Opel N, Ström J, et al. Elevated CYP2C19 expression is associated with depressive symptoms and hippocampal homeostasis impairment. MoPsychiatry. 2017;22(8):1224. https://doi.org/10.1038/mp.2017.93
  38. Nassan M, Nicholson WT, Elliott MA, et al. Pharmacokinetic Pharmacogenetic Prescribing Guidelines for Antidepressants: A Template for Psychiatric Precision Medicine. Mayo Clin Proc. 2016;91(7):897-907.  https://doi.org/10.1016/j.mayocp.2016.02.023
  39. Suwała J, Machowska M, Wiela-Hojeńska A. Venlafaxine pharmacogenetics: a comprehensive review. Pharmacogenomics. 2019;20(11):829-845.  https://doi.org/10.2217/pgs-2019-0031
  40. Ahmed AT, Biernacka JM, Jenkins G, et al. Pharmacokinetic-Pharmacodynamic interaction associated with venlafaxine-XR remission in patients with major depressive disorder with history of citalopram/escitalopram treatment failure. J Affect Disord. 2019;246:62-68.  https://doi.org/10.1016/j.jad.2018.12.021
  41. Kee PS, Maggo SDS, Kennedy MA, Chin PKL. The pharmacogenetics of CYP2D6 and CYP2C19 in a case series of antidepressant responses. Front Pharmacol. 2023;14:1080117. https://doi.org/10.3389/fphar.2023.1080117
  42. Xin J, Yuan M, Peng Y, Wang J. Analysis of the Deleterious Single-Nucleotide Polymorphisms Associated With Antidepressant Efficacy in Major Depressive Disorder. Front Psychiatry. 2020;11:151.  https://doi.org/10.3389/fpsyt.2020.00151
  43. Brouwer JMJL, Nijenhuis M, Soree B, et al. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction between CYP2C19 and CYP2D6 and SSRIs. Eur J Hum Genet. 2022;30(10):1114-1120. https://doi.org/10.1038/s41431-021-01004-7
  44. Saiz-Rodríguez M, Belmonte C, Román M, et al. Effect of Polymorphisms on the Pharmacokinetics, Pharmacodynamics and Safety of Sertraline in Healthy Volunteers. Basic Clin Pharmacol Toxicol. 2018;122(5):501-511.  https://doi.org/10.1111/bcpt.12938
  45. Jukić MM, Haslemo T, Molden E, Ingelman-Sundberg M. Impact of CYP2C19 Genotype on Escitalopram Exposure and Therapeutic Failure: A Retrospective Study Based on 2,087 Patients. Am J Psychiatry. 2018;175(5):463-470.  https://doi.org/10.1176/appi.ajp.2017.17050550
  46. Ramsey LB, Bishop JR, Strawn JR. Pharmacogenetics of treating pediatric anxiety and depression. Pharmacogenomics. 2019;20(12):867-870.  https://doi.org/10.2217/pgs-2019-0088
  47. Aldrich SL, Poweleit EA, Prows CA, et al. Influence of CYP2C19 metabolizer status on escitalopram/citalopram tolerability and response in youth with anxiety and depressive disorders. Front Pharmacol. 2019;10:99.  https://doi.org/10.3389/fphar.2019.00099
  48. AlOlaby RR, Sweha SR, Silva M, et al. Molecular biomarkers predictive of sertraline treatment response in young children with fragile X syndrome. Brain Dev. 2017;39(6):483-492.  https://doi.org/10.1016/j.braindev.2017.01.012
  49. Poweleit EA, Aldrich SL, Martin LJ, et al. Pharmacogenetics of Sertraline Tolerability and Response in Pediatric Anxiety and Depressive Disorders. J Child Adolesc Psychopharmacol. 2019;29(5):348-361.  https://doi.org/10.1089/cap.2019.0017
  50. Joković D, Milosavljević F, Stojanović Z, et al. CYP2C19 slow metabolizer phenotype is associated with lower antidepressant efficacy and tolerability. Psychiatry Res. 2022;312:114535. https://doi.org/10.1016/j.psychres.2022.114535
  51. Taranu A, Colle R, Gressier F, et al. Should a routine genotyping of CYP2D6 and CYP2C19 genetic polymorphisms be recommended to predict venlafaxine efficacy in depressed patients treated in psychiatric settings? Pharmacogenomics. 2017;18(7):639-650.  https://doi.org/10.2217/pgs-2017-0003
  52. Sagahón-Azúa J, Medellín-Garibay SE, Chávez-Castillo CE, et al. Factors associated with fluoxetine and norfluoxetine plasma concentrations and clinical response in Mexican patients with mental disorders. Pharmacol Res Perspect. 2021;9(5):e00864. https://doi.org/10.1002/prp2.864
  53. Petry N, Lupu R, Gohar A, et al. CYP2C19 genotype, physician prescribing pattern, and risk for long QT on serotonin selective reuptake inhibitors. Pharmacogenomics. 2019;20(5):343-351.  https://doi.org/10.2217/pgs-2018-0156
  54. Strumila R, Lengvenyte A, Ambrozaityte L, et al. CYP2C19 polymorphisms are associated with severity of depression at initial evaluation and after the treatment independently of the prescribed medications: 4 weeks prospective study. Psychiatr Genet. 2021;31(5):177-185.  https://doi.org/10.1097/YPG.0000000000000287
  55. Fabbri C, Tansey KE, Perlis RH, et al. Effect of cytochrome CYP2C19 metabolizing activity on antidepressant response and side effects: Meta-analysis of data from genome-wide association studies. Eur Neuropsychopharmacol. 2018;28(8):945-954.  https://doi.org/10.1016/j.euroneuro.2018.05.009
  56. Calabrò M, Fabbri C, Kasper S, et al. Metabolizing status of CYP2C19 in response and side effects to medications for depression: Results from a naturalistic study. Eur Neuropsychopharmacol. 2022;56:100-111.  https://doi.org/10.1016/j.euroneuro.2022.01.008
  57. Milosavljevic F, Bukvic N, Pavlovic Z, et al. Association of CYP2C19 and CYP2D6 Poor and Intermediate Metabolizer Status With Antidepressant and Antipsychotic Exposure: A Systematic Review and Meta-analysis. JAMA Psychiatry. 2021;78(3):270-280.  https://doi.org/10.1001/jamapsychiatry.2020.3643
  58. Cellini L, De Donatis D, Zernig G, et al. Antidepressant efficacy is correlated with plasma levels: mega-analysis and further evidence. Int Clin Psychopharmacol. 2022;37(2):29-37.  https://doi.org/10.1097/YIC.0000000000000386
  59. Furukawa TA, Cipriani A, Cowen PJ, et al. Optimal dose of selective serotonin reuptake inhibitors, venlafaxine, and mirtazapine in major depression: a systematic review and dose-response meta-analysis. Lancet Psychiatry. 2019;6(7):601-609.  https://doi.org/10.1016/S2215-0366(19)30217-2
  60. Hiemke C, Bergemann N, Clement HW, et al. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Pharmacopsychiatry. 2018;51(1-02):9-62.  https://doi.org/10.1055/s-0043-116492
  61. Bråten LS, Ingelman-Sundberg M, Jukic MM, et al. Impact of the novel CYP2C:TG haplotype and CYP2B6 variants on sertraline exposure in a large patient population. Clin Transl Sci. 2022;15(9):2135-2145. https://doi.org/10.1111/cts.13347
  62. Hicks JK, Bishop JR, Sangkuhl K, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 Genotypes and Dosing of Selective Serotonin Reuptake Inhibitors. Clin Pharmacol Ther. 2015;98(2):127-134.  https://doi.org/10.1002/cpt.147
  63. Hieronymus F. Which antidepressant doses are optimal? Lancet Psychiatry. 2019;6(7):552-554.  https://doi.org/10.1016/S2215-0366(19)30221-4
  64. Jakubovski E, Varigonda AL, Freemantle N, et al. Systematic review and meta-analysis: dose-response relationship of selective serotonin reuptake inhibitors in major depressive disorder. Am J Psychiatry. 2016;173(2):174-183.  https://doi.org/10.1176/appi.ajp.2015.15030331
  65. Tini E, Smigielski L, Romanos M, et al. Therapeutic drug monitoring of sertraline in children and adolescents: A naturalistic study with insights into the clinical response and treatment of obsessive-compulsive disorder. Compr Psychiatry. 2022;115:152301. https://doi.org/10.1016/j.comppsych.2022.152301
  66. Peña-Vargas C, Armaiz-Peña G, Castro-Figueroa E. A Biopsychosocial Approach to Grief, Depression, and the Role of Emotional Regulation. Behav Sci (Basel). 2021;11(8):110.  https://doi.org/10.3390/bs11080110
  67. Tanaka M, Vécsei L. Editorial of Special Issue «Crosstalk between Depression, Anxiety, and Dementia: Comorbidity in Behavioral Neurology and Neuropsychiatry». Biomedicines. 2021;9(5):517.  https://doi.org/10.3390/biomedicines9050517
  68. Kato M, Ogata H, Tahara H, et al. Multiple Pre-Treatment miRNAs Levels in Untreated Major Depressive Disorder Patients Predict Early Response to Antidepressants and Interact with Key Pathways. Int J Mol Sci. 2022;23(7):3873. https://doi.org/10.3390/ijms23073873
  69. Saeedi S, Nagy C, Ibrahim P, et al. Neuron-derived extracellular vesicles enriched from plasma show altered size and miRNA cargo as a function of antidepressant drug response. Mol Psychiatry. 2021;26(12):7417-7424. https://doi.org/10.1038/s41380-021-01255-2
  70. Roy B, Dwivedi Y. An insight into the sprawling microverse of microRNAs in depression pathophysiology and treatment response. Neurosci Biobehav Rev. 2023;146:105040. https://doi.org/10.1016/j.neubiorev.2023.105040
  71. Baudry A, Mouillet-Richard S, Schneider B, et al. miR-16 targets the serotonin transporter: a new facet for adaptive responses to antidepressants. Science. 2010;329(5998):1537-1541. https://doi.org/10.1126/science.1193692
  72. Ding Y, Zhong M, Qiu B, et al. Abnormal expression of miR-135a in patients with depression and its possible involvement in the pathogenesis of the condition. Exp Ther Med. 2021;22(1):726.  https://doi.org/10.3892/etm.2021.10158
  73. Fiori LM, Lopez JP, Richard-Devantoy S, et al. Investigation of miR-1202, miR-135a, and miR-16 in Major Depressive Disorder and Antidepressant Response. Int J Neuropsychopharmacol. 2017;20(8):619-623.  https://doi.org/10.1093/ijnp/pyx034
  74. Lopez JP, Lim R, Cruceanu C, et al. miR-1202 is a primate-specific and brain-enriched microRNA involved in major depression and antidepressant treatment. Nat Med. 2014;20(7):764-768.  https://doi.org/10.1038/nm.3582
  75. He S, Liu X, Jiang K, et al. Alterations of microRNA-124 expression in peripheral blood mononuclear cells in pre- and post-treatment patients with major depressive disorder. J Psychiatr Res. 2016;78:65-71.  https://doi.org/10.1016/j.jpsychires.2016.03.015
  76. Ahmadimanesh M, Etemad L, Morshedi Rad D, et al. Effect of citalopram and sertraline on the expression of miRNA-124, 132, and 16 and their protein targets in patients with depression. Iran J Basic Med Sci. 2023;26(7):820-829.  https://doi.org/10.22038/IJBMS.2023.66496.14595
  77. Fang Y, Qiu Q, Zhang S, et al. Changes in miRNA-132 and miR-124 levels in non-treated and citalopram-treated patients with depression. J Affect Disord. 2018;227:745-751.  https://doi.org/10.1016/j.jad.2017.11.090
  78. Mouillet-Richard S, Baudry A, Launay JM, Kellermann O. MicroRNAs and depression. Neurobiol Dis. 2012;46(2):272-278.  https://doi.org/10.1016/j.nbd.2011.12.035
  79. Israel-Elgali I, Pan H, Oved K, et al. Impaired myelin ultrastructure is reversed by citalopram treatment in a mouse model for major depressive disorder. J Psychiatr Res. 2023;166:100-114.  https://doi.org/10.1016/j.jpsychires.2023.09.012
  80. Simeoli R, Montague K, Jones HR, et al. Exosomal cargo including microRNA regulates sensory neuron to macrophage communication after nerve trauma. Nat Commun. 2017;8(1):1778. https://doi.org/10.1038/s41467-017-01841-5
  81. Li LD, Naveed M, Du ZW, et al. Abnormal expression profile of plasma-derived exosomal microRNAs in patients with treatment-resistant depression. Hum Genomics. 2021;15(1):55.  https://doi.org/10.1186/s40246-021-00354-z
  82. Hung YY, Chou CK, Yang YC, et al. Exosomal let-7e, miR-21-5p, miR-145, miR-146a and miR-155 in Predicting Antidepressants Response in Patients with Major Depressive Disorder. Biomedicines. 2021;9(10):1428. https://doi.org/10.3390/biomedicines9101428
  83. Oslin DW, Lynch KG, Shih MC, et al. Effect of Pharmacogenomic Testing for Drug-Gene Interactions on Medication Selection and Remission of Symptoms in Major Depressive Disorder: The PRIME Care Randomized Clinical Trial. JAMA. 2022;328(2):151-161.  https://doi.org/10.1001/jama.2022.9805
  84. Thase ME, Parikh SV, Rothschild AJ, et al. Impact of pharmacogenomics on clinical outcomes for patients taking medications with gene-drug interactions in a randomized controlled trial. J Clin Psychiatry. 2019;80(6):19m12910. https://doi.org/10.4088/JCP.19m12910
  85. Brown LC, Stanton JD, Bharthi K, et al. Pharmacogenomic Testing and Depressive Symptom Remission: A Systematic Review and Meta-Analysis of Prospective, Controlled Clinical Trials. Clin Pharmacol Ther. 2022;112(6):1303-1317. https://doi.org/10.1002/cpt.2748
  86. Swen JJ, van der Wouden CH, Manson LE, et al. A 12-gene pharmacogenetic panel to prevent adverse drug reactions: an open-label, multicentre, controlled, cluster-randomised crossover implementation study. Lancet. 2023;401(10374):347-356.  https://doi.org/10.1016/S0140-6736(22)01841-4

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.