The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Khabibrakhmanov A.N.

Kazan State Medical University

Mukhamedyarov M.A.

Kazan State Medical University

Bogdanov É.I.

Kazan State Medical University

Biomarkers of amyotrophic lateral sclerosis

Authors:

Khabibrakhmanov A.N., Mukhamedyarov M.A., Bogdanov É.I.

More about the authors

Read: 3842 times


To cite this article:

Khabibrakhmanov AN, Mukhamedyarov MA, Bogdanov ÉI. Biomarkers of amyotrophic lateral sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2022;122(5):30‑35. (In Russ.)
https://doi.org/10.17116/jnevro202212205130

Recommended articles:
Difficulties in life­time diagnosis of Creutzfeldt—Jakob disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):19-27
The role of immuno-inflammatory factors in the deve­lopment of nega­tive symptoms in schi­zophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):42-48
New aspe­cts of psoriasis pathogenesis: meta­bolomic profiling in dermatology. Russian Journal of Clinical Dermatology and Vene­reology. 2024;(5):526-531
The role of neutrophils in the mechanisms of sepsis. Russian Journal of Archive of Pathology. 2024;(6):82-91
Inflammatory aging. Part 1. The principal biochemical mechanisms. Russian Journal of Preventive Medi­cine. 2024;(12):145-150
Clinical case of auri­cular gouty tophi. Russian Bulletin of Otorhinolaryngology. 2024;(6):80-84

References:

  1. Bendotti C, Bonetto V, Pupillo E, et al. Focus on the heterogeneity of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Front Degener. 2020;21(7-8):485-495.  https://doi.org/10.1080/21678421.2020.1779298
  2. Masrori P, Van Damme P. Amyotrophic lateral sclerosis: a clinical review. Eur J Neurol. 2020;27(10):1918-1929. https://doi.org/10.1111/ene.14393
  3. Brown RH, Al-Chalabi A. Amyotrophic Lateral Sclerosis. N Engl J Med. 2017;377(2):162-172.  https://doi.org/10.1056/NEJMra1603471
  4. Peters OM, Ghasemi M, Brown RH. Emerging mechanisms of molecular pathology in ALS. J Clin Invest. 2015;125(5):1767-1779. https://doi.org/10.1172/JCI71601
  5. Ghasemi M, Brown RH. Genetics of Amyotrophic Lateral Sclerosis. Cold Spring Harb Perspect Med. 2018;8(5): 45-51.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932579
  6. Al-Chalabi A, Hardiman O, Kiernan MC, et al. Amyotrophic lateral sclerosis: moving towards a new classification system. Lancet Neurol. 2016;15(11):1182-1194. https://doi.org/10.1016/S1474-4422(16)30199-5
  7. Mitsumoto H, Brooks BR, Silani V. Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? Lancet Neurol. 2014;13(11):1127-1138. https://doi.org/10.1016/S1474-4422(14)70129-2
  8. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89-95.  https://doi.org/10.1067/mcp.2001.113989
  9. Lee MK, Marszalek JR, Cleveland DW. A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron. 1994;13(4):975-988.  https://doi.org/10.1016/0896-6273(94)90263-1
  10. Reijn TS, Abdo WF, Schelhaas HJ, Verbeek MM. CSF neurofilament protein analysis in the differential diagnosis of ALS. J Neurol. 2009;256(4):615-619.  https://doi.org/10.1007/s00415-009-0131-z
  11. Schaepdryver MD, Goossens J, Meyer SD, et al. Serum neurofilament heavy chains as early marker of motor neuron degeneration. Ann Clin Transl Neurol. 2019;6(10):1971-1979. https://doi.org/10.1002/acn3.50890
  12. Vladykina AV, Nazarov VD, Krasnov VS, et al. The diagnostic significance of neurofilament heavy chains in cerebrospinal fluid in amyotrophic lateral sclerosis. Annaly Klinicheskoj I Jeksperimental’noj Nevrologii. 2021;15(1):43-50. (In Russ.). https://doi.org/10.25692/ACEN.2021.1.5
  13. Vu LT, Bowser R. Fluid-Based Biomarkers for Amyotrophic Lateral Sclerosis. Neurotherapeutics. 2017;14(1):119-134.  https://doi.org/10.1007/s13311-016-0503-x
  14. Ganesalingam J, An J, Bowser R, Andersen PM, Shaw CE. pNfH is a promising biomarker for ALS. Amyotroph Lateral Scler Front Degener. 2013;14(2):146-149.  https://doi.org/10.3109/21678421.2012.729596
  15. Boylan KB, Glass JD, Crook JE, et al. Phosphorylated neurofilament heavy subunit (pNF-H) in peripheral blood and CSF as a potential prognostic biomarker in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2013;84(4):467-472.  https://doi.org/10.1136/jnnp-2012-303768
  16. Chen K, Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nat Rev Genet. 2007;8(2):93-103.  https://doi.org/10.1038/nrg1990
  17. Emde A, Eitan C, Liou L, et al. Dysregulated miRNA biogenesis downstream of cellular stress and ALS‐causing mutations: a new mechanism for ALS. EMBO J. 2015;34(21):2633-2651. https://doi.org/10.15252/embj.201490493
  18. Ma G, Wang Y, Li Y, et al. MiR-206, a Key Modulator of Skeletal Muscle Development and Disease. Int J Biol Sci. 2015;11(3):345-352.  https://doi.org/10.7150/ijbs.10921
  19. Dobrowolny G, Martone J, Lepore E, et al. A longitudinal study defined circulating microRNAs as reliable biomarkers for disease prognosis and progression in ALS human patients. Cell Death Discov. 2021 Jan 11;(1):4.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7801652
  20. Pegtel DM, Gould SJ. Exosomes. Annu Rev Biochem. 2019;88:487-514.  https://doi.org/10.1146/annurev-biochem-013118-111902
  21. Banack SA, Dunlop RA, Cox PA. An miRNA fingerprint using neural-enriched extracellular vesicles from blood plasma: towards a biomarker for amyotrophic lateral sclerosis/motor neuron disease. Open Biol. 2020;10(6):24-29.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7333885
  22. Ricci C, Marzocchi C, Battistini S. MicroRNAs as Biomarkers in Amyotrophic Lateral Sclerosis. Cells. 2018;7(11):219.  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6262636
  23. McGeer PL, McGeer EG. Inflammatory processes in amyotrophic lateral sclerosis. Muscle Nerve. 2002;26(4):459-470.  https://doi.org/10.1002/mus.10191
  24. Mitchell RM, Freeman WM, Randazzo WT, et al. A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology. 2009;72(1):14-19.  https://doi.org/10.1212/01.wnl.0000333251.36681.a5
  25. Olesen MN, Wuolikainen A, Nilsson AC, et al. Inflammatory profiles relate to survival in subtypes of amyotrophic lateral sclerosis. Neurol — Neuroimmunol Neuroinflammation. 2020;7(3):e697. https://doi.org/10.1212/NXI.0000000000000697
  26. Yan Q, Johnson EM. An immunohistochemical study of the nerve growth factor receptor in developing rats. J Neurosci Off J Soc Neurosci. 1988;8(9):3481-3498. https://doi.org/10.1523/JNEUROSCI.08-09-03481.1988
  27. Seeburger JL, Tarras S, Natter H, Springer JE. Spinal cord motoneurons express p75NGFR and p145trkB mRNA in amyotrophic lateral sclerosis. Brain Res. 1993;621(1):111-115.  https://doi.org/10.1016/0006-8993(93)90304-6
  28. Shepheard SR, Chataway T, Schultz DW, Rush RA, Rogers M-L. The Extracellular Domain of Neurotrophin Receptor p75 as a Candidate Biomarker for Amyotrophic Lateral Sclerosis. PLoS ONE. 2014;9(1):e87398. https://doi.org/10.1371/journal.pone.0087398
  29. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, et al. Expanded GGGGCC hexanucleotide repeat in non-coding region of C9ORF72 causes chromosome 9p-linked frontotemporal dementia and amyotrophic lateral sclerosis. Neuron. 2011;72(2):245-256.  https://doi.org/10.1016/j.neuron.2011.09.011
  30. Balendra R, Isaacs AM. C9orf72-mediated ALS and FTD: multiple pathways to disease. Nat Rev Neurol. 2018;14(9):544-558.  https://doi.org/10.1038/s41582-018-0047-2
  31. Ash PE, Bieniek KF, Gendron TF, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron. 2013;77:639-646.  https://doi.org/10.1016/j.neuron.2013.02.004
  32. Su Z, Zhang Y, Gendron TF, et al. Discovery of a Biomarker and Lead Small Molecules to Target r(GGGGCC)-Associated Defects in c9FTD/ALS. Neuron. 2014;83(5):1043-1050. https://doi.org/10.1016/j.neuron.2014.07.041
  33. Arai T, Hasegawa M, Akiyama H, et al. TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun. 2006;351(3):602-611.  https://doi.org/10.1016/j.bbrc.2006.10.093
  34. Goossens J, Vanmechelen E, Trojanowski JQ, et al. TDP-43 as a possible biomarker for frontotemporal lobar degeneration: a systematic review of existing antibodies. Acta Neuropathol Commun. 2015;3:23-29.  https://doi.org/10.1186/s40478-015-0195-1
  35. Bunton-Stasyshyn RK, Saccon RA, Fratta P, Fisher E.M. SOD1 Function and Its Implications for Amyotrophic Lateral Sclerosis Pathology: New and Renascent Themes. The Neuroscientist. 2015;21:519-529.  https://doi.org/10.1177/1073858414561795
  36. Rosen DR, Siddique T, Patterson D, et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature. 1993;362(6415):59-62.  https://doi.org/10.1038/362059a0
  37. Frutiger K, Lukas TJ, Gorrie G, Ajroud-Driss S, Siddique T. Gender difference in levels of Cu/Zn superoxide dismutase (SOD1) in cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Amyotroph Lateral Scler. 2008;9(3):184-187.  https://doi.org/10.1080/17482960801984358
  38. Winer L, Srinivasan D, Chun S, et al. Cerebrospinal Fluid Defines SOD1 as a Pharmacodynamic Marker for Antisense Oligonucleotide Therapy. JAMA Neurol. 2013;70(2):201-207.  https://doi.org/10.1001/jamaneurol.2013.593
  39. Nagai A, Terashima M, Sheikh AM, et al. Involvement of cystatin C in pathophysiology of CNS diseases. Front Biosci J Virtual Libr. 2008;13:3470-3479. https://doi.org/10.2741/2941
  40. Okamoto K, Hirai S, Amari M, Watanabe M, Sakurai A. Bunina bodies in amyotrophic lateral sclerosis immunostained with rabbit anti-cystatin C serum. Neurosci Lett. 1993;162(1-2):125-128.  https://doi.org/10.1016/0304-3940(93)90576-7
  41. Ryberg H, An J, Darko S, et al. Discovery and Verification of Amyotrophic Lateral Sclerosis Biomarkers by Proteomics. Muscle Nerve. 2010;42(1):104-111.  https://doi.org/10.1002/mus.21683
  42. Wilson ME, Boumaza I, Lacomis D, Bowser R. Cystatin C: a candidate biomarker for amyotrophic lateral sclerosis. PloS One. 2010;5(12):e15133. https://doi.org/10.1371/journal.pone.0015133
  43. Festoff BW, Fernandez HL. Plasma and red blood cell acetylcholinesterase in amyotrophic lateral sclerosis. Muscle Nerve. 1981;4(1):41-47.  https://doi.org/10.1002/mus.880040108
  44. Rasool CG, Chad D, Bradley WG, Connolly B, Baruah JK. Acetylcholinesterase and ATPases in motor neuron degenerative diseases. Muscle Nerve. 1983;6(6):430-435.  https://doi.org/10.1002/mus.880060606
  45. Niebroj-Dobosz I, Hausmanowa-Petrusewicz I. Serum cholinesterase activity in infantile and juvenile spinal muscular atrophy. Acta Neurol Scand. 1989;80(3):208-214.  https://doi.org/10.1111/j.1600-0404.1989.tb03864.x
  46. Sayer R, Law E, Connelly PJ, Breen KC. Association of a salivary acetylcholinesterase with Alzheimer’s disease and response to cholinesterase inhibitors. Clin Biochem. 2004;37(2):98-104.  https://doi.org/10.1016/j.clinbiochem.2003.10.007
  47. Fedorova T, Knudsen CS, Mouridsen K, Nexo E, Borghammer P. Salivary Acetylcholinesterase Activity Is Increased in Parkinson’s Disease: A Potential Marker of Parasympathetic Dysfunction. Park Dis. 2015;2015:1-7.  https://doi.org/10.1155/2015/156479
  48. Rushkevich YN, Pashkouskaya ID, Likhachev SA. Neurospecific proteins in cerebrospinal fluid and in the bloodserum of patients with amyotrophic lateral sclerosis. Zhurnal Nevrologii i Psikhiatrii im. S.S. Korsakova. 2018;118(5):75-80. (In Russ.). https://doi.org/10.17116/jnevro20181185175
  49. Isgrò MA, Bottoni P, Scatena R. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects. In: Scatena R, ed. Advances in Cancer Biomarkers. Vol 867. Advances in Experimental Medicine and Biology. Springer Netherlands; 2015;125-143.  https://doi.org/10.1007/978-94-017-7215-0_9
  50. Khosla R, Rain M, Sharma S, Anand A. Amyotrophic Lateral Sclerosis (ALS) prediction model derived from plasma and CSF biomarkers. PLoS ONE. 2021;16(2):e0247025. https://doi.org/10.1371/journal.pone.0247025
  51. Ono S, Shimizu N, Imai T, Rodriguez GP. Urinary collagen metabolite excretion in amyotrophic lateral sclerosis. Muscle Nerve. 2001;24(6):821-825.  https://doi.org/10.1002/mus.1075
  52. Ono S, Imai T, Matsubara S, et al. Decreased urinary concentrations of type IV collagen in amyotrophic lateral sclerosis. Acta Neurol Scand. 1999;100(2):111-116.  https://doi.org/10.1111/j.1600-0404.1999.tb01048.x
  53. Mitsumoto H, Santella RM, Liu X, et al. Oxidative stress biomarkers in sporadic ALS. Amyotroph Lateral Scler Off Publ World Fed Neurol Res Group Mot Neuron Dis. 2008;9(3):177-183.  https://doi.org/10.1080/17482960801933942

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.