The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Volynets G.V.

Veltishchev Research Clinical Institute of Pediatrics and Pediatric Surgery — Pirogov Russian National Research Medical University;
Pirogov Russian National Research Medical University

Khavkin A.I.

Research and Clinical Institute of Childhood

Potapov A.S.

National Medical Research Center for Children’s Health;
Sechenov First Moscow State Medical University (Sechenov University)

Skvortsova T.A.

Veltishchev Research Clinical Institute of Pediatrics and Pediatric Surgery — Pirogov Russian National Research Medical University;
Pirogov Russian National Research Medical University;
Morozovskaya Children’s City Clinical Hospital

Nikitin A.V.

Veltishchev Research Clinical Institute of Pediatrics and Pediatric Surgery — Pirogov Russian National Research Medical University;
Pirogov Russian National Research Medical University;
Morozovskaya Children’s City Clinical Hospital

Gevorgyan A.K.

Russian Medical Academy of Continuous Professional Education

Primary bile acid synthesis disorders

Authors:

Volynets G.V., Khavkin A.I., Potapov A.S., Skvortsova T.A., Nikitin A.V., Gevorgyan A.K.

More about the authors

Read: 1715 times


To cite this article:

Volynets GV, Khavkin AI, Potapov AS, Skvortsova TA, Nikitin AV, Gevorgyan AK. Primary bile acid synthesis disorders. Russian Journal of Evidence-Based Gastroenterology. 2025;14(1):71‑90. (In Russ.)
https://doi.org/10.17116/dokgastro20251401171

Recommended articles:
Modern view on the etiology of gallstone disease in children. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):59-68
Epidemiology of suicidal beha­vior in children and adolescents worldwide. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11-2):16-26
Diagnosis of neuroinfections in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11-2):51-59
Modern approaches to diagnosis and treatment of syndrome of auto­nomic dysfunction in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11-2):66-75
Inte­rnal hernias stra­ngulated in mese­nteric openings in young children. Piro­gov Russian Journal of Surgery. 2024;(11):54-59
Problems of providing dental care to children using the example of the city of Chapaevsk, Samara region. Russian Journal of Operative Surgery and Clinical Anatomy. 2024;(4):35-42

References:

  1. Zhou H, Hylemon PB. Bile acids are nutrient signaling hormones. Steroids. 2014;86:62-68.  https://doi.org/10.1016/j.steroids.2014.04.016
  2. Chiang JYL, Ferrell JM. Bile acid metabolism in liver pathobiology. Gene Expression. 2018;18(2):71-87. 
  3. Fawaz R, Baumann U, Ekong U, Fischler B, Hadzic N, Mack CL, McLin VA, Molleston JP, Neimark E, Ng VL, Karpen SJ. Guideline for the evaluation of cholestatic jaundice in infants: joint recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition. Journal of Pediatric Gastroenterology and Nutrition. 2017;64(1): 154-168.  https://doi.org/10.1097/MPG.0000000000001334
  4. Heubi JE, Setchell KDR, Bove KE. Inborn errors of bile acid metabolism. Clinics in Liver Disease. 2018;22(4):671-687.  https://doi.org/10.1016/j.cld.2018.06.006
  5. Gonzales E, Matarazzo L, Franchi-Abella S, Dabadie A, Cohen J, Habes D, Hillaire S, Guettier C, Taburet AM, Myara A, Jacquemin E. Cholic acid for primary bile acid synthesis defects: a life-saving therapy allowing a favorable outcome in adulthood. Orphanet Journal of Rare Diseases. 2018;13(1):190.  https://doi.org/10.1186/s13023-018-0920-5
  6. Bull LN, Thompson RJ. Progressive familial intrahepatic cholestasis. Clinics in Liver Disease. 2018;22(4):657-669.  https://doi.org/10.1016/j.cld.2018.06.003
  7. Volynets GV. Familial intrahepatic cholestasis in children: problems and prospects. Rossijskij pediatricheskij zhurnal. 2019;22(6):388-394. (In Russ.). https://doi.org/10.18821/1560-9561-2019-22-6-388-394
  8. Volynets GV, Nikitin AV. Kholestaticheskie bolezni u detej. M.: Opponent; 2020. (In Russ.).
  9. Volynets GV, Khavkin AI, Nikitin AV, Skvortsova TA. Differentsial’naya diagnostika i printsipy terapii vrozhdennykh kholestaticheskikh boleznej u detej rannego vozrasta. M.: Prima Print; 2018. (In Russ.).
  10. Volynets GV, Khavkin AI, Nikitin AV, Skvortsova TA. Progressive familial intrahepatic cholestasis: clinical features, diagnostics, treatment. Voprosy prakticheskoj pediatrii. 2018;13(1):27-34. (In Russ.). https://doi.org/10.20953/1817-7646-2018-1-27-34
  11. Volynets GV, Khavkin AI, Panfilova VN, Nikitin AV, Skvortsova TA, Potapov AS, Smirnov IE, Konova SR. Differential diagnostics of congenital cholestatic diseases in children. Eksperimental’naya i klinicheskaya gastroenterologiya. 2017;144(8):67-74. (In Russ.).
  12. Chiang JY. Bile acids: regulation of synthesis. Journal of Lipid Research. 2009;50(10):1955-1966. https://doi.org/10.1194/jlr.R900010-JLR200
  13. Parsons BD, Medina-Luna D, Scur M, Pinelli M, Gamage GS, Chilvers RA, Hamon Y, Ahmed IHI, Savary S, Makrigiannis AP, Braverman NE, Rodriguez-Alcazar JF, Latz E, Karakach TK, Di Cara F. Peroxisome deficiency underlies failures in hepatic immune cell development and antigen presentation in a severe Zellweger disease model. Cell Reports. 2024;43(2):113744. https://doi.org/10.1016/j.celrep.2024.113744
  14. Chiang JYL, Ferrell JM. Bile acids as metabolic regulators and nutrient sensors. Annual Review of Nutrition. 2019;39:175-200.  https://doi.org/10.1146/annurev-nutr-082018-124344
  15. Balakrishnan A, Polli JE. Apical sodium dependent bile acid transporter (ASBT, SLC10A2): a potential prodrug target. Molecular Pharmaceutics. 2006;3(3):223-230.  https://doi.org/10.1021/mp060022d
  16. Soroka CJ, Ballatori N, Boyer JL. Organic solute transporter, OSTalphaOSTbeta: its role in bile acid transport and cholestasis. Seminars in Liver Disease. 2010;30(2):178-185.  https://doi.org/10.1055/s-0030-1253226
  17. Anwer MS. Cellular regulation of hepatic bile acid transport in health and cholestasis. Hepatology. 2004;39(3):581-590.  https://doi.org/10.1002/hep.20090
  18. Setchell KD, Schwarz M, O’Connell NC, Lund EG, Davis DL, Lathe R, Thompson HR, Weslie Tyson R, Sokol RJ, Russell DW. Identification of a new inborn error in bile acid synthesis: mutation of the oxysterol 7alpha-hydroxylase gene causes severe neonatal liver disease. Journal of Clinical Investigation. 1998;102(9):1690-1703. https://doi.org/10.1172/JCI2962
  19. Chen JY, Wu JF, Kimura A, Nittono H, Liou BY, Lee CS, Chen HS, Chiu YC, Ni YH, Peng SS, Lee WT, Tsai IJ, Chang MH, Chen HL. AKR1D1 and CYP7B1 mutations in patients with inborn errors of bile acid metabolism: possibly underdiagnosed diseases. Pediatrics and Neonatology. 2020;61(1):75-83.  https://doi.org/10.1016/j.pedneo.2019.06.009
  20. Dai D, Mills PB, Footitt E, Gissen P, McClean P, Stahlschmidt J, Coupry I, Lavie J, Mochel F, Goizet C, Mizuochi T, Kimura A, Nittono H, Schwarz K, Crick PJ, Wang Y, Griffiths WJ, Clayton PT. Liver disease in infancy caused by oxysterol 7α-hydroxylase deficiency: successful treatment with chenodeoxycholic acid. Journal of Inherited Metabolic Disease. 2014;37(5):851-861.  https://doi.org/10.1007/s10545-014-9695-6
  21. Hong J, Oh SH, Yoo HW, Nittono H, Kimura A, Kim KM. Complete recovery of oxysterol 7α-hydroxylase deficiency by living donor transplantation in a 4-month-old infant: the first Korean case report and literature review. Journal of Korean Medical Science. 2018;33(51):e324. https://doi.org/10.3346/jkms.2018.33.e324
  22. Mizuochi T, Kimura A, Suzuki M, Ueki I, Takei H, Nittono H, Kakiuchi T, Shigeta T, Sakamoto S, Fukuda A, Nakazawa A, Shimizu T, Kurosawa T, Kasahara M. Successful heterozygous living donor liver transplantation for an oxysterol 7α-hydroxylase deficiency in a Japanese patient. Liver Transplantation. 2011;17(9):1059-1065. https://doi.org/10.1002/lt.22331
  23. Ueki I, Kimura A, Nishiyori A, Chen HL, Takei H, Nittono H, Kurosawa T. Neonatal cholestatic liver disease in an Asian patient with a homozygous mutation in the oxysterol 7alpha-hydroxylase gene. Journal of Pediatric Gastroenterology and Nutrition. 2008;46(4):465-469.  https://doi.org/10.1097/MPG.0b013e31815a9911
  24. Chong CPK, Mills PB, McClean P, Clayton PT. Response to chenodeoxycholic acid therapy in an infant with oxysterol 7alpha-hydroxylase deficiency. Journal of Inherited Metabolic Disease.2010:33(Suppl 1):S122.
  25. Barkhof F, Verrips A, Wesseling P, van Der Knaap MS, van Engelen BG, Gabreëls FJ, Keyser A, Wevers RA, Valk J. Cerebrotendinous xanthomatosis: the spectrum of imaging findings and the correlation with neuropathologic findings. Radiology. 2000;217(3):869-876.  https://doi.org/10.1148/radiology.217.3.r00dc03869
  26. Berginer VM, Gross B, Morad K, Kfir N, Morkos S, Aaref S, Falik-Zaccai TC. Chronic diarrhea and juvenile cataracts: think cerebrotendinous xanthomatosis and treat. Pediatrics. 2009;123(1):143-147.  https://doi.org/10.1542/peds.2008-0192
  27. Coutinho P, Barros J, Zemmouri R, Guimarães J, Alves C, Chorão R, Lourenço E, Ribeiro P, Loureiro JL, Santos JV, Hamri A, Paternotte C, Hazan J, Silva MC, Prud’homme JF, Grid D. Clinical heterogeneity of autosomal recessive spastic paraplegias: analysis of 106 patients in 46 families. Archives of Neurology. 1999;56(8):943-949.  https://doi.org/10.1001/archneur.56.8.943
  28. Gelzo M, Di Taranto MD, Bisecco A, D’Amico A, Capuano R, Giacobbe C, Caputo M, Cirillo M, Tedeschi G, Fortunato G, Corso G. A case of Cerebrotendinous Xanthomatosis with spinal cord involvement and without tendon xanthomas: identification of a new mutation of the CYP27A1 gene. Acta Neurologica Belgica. 2021;121(2):561-566.  https://doi.org/10.1007/s13760-019-01267-4
  29. Guenzel AJ, DeBarber A, Raymond K, Dhamija R. Familial variability of cerebrotendinous xanthomatosis lacking typical biochemical findings. JIMD Reports. 2021;59(1):3-9.  https://doi.org/10.1002/jmd2.12197
  30. Takasone K, Morizumi T, Nakamura K, Mochizuki Y, Yoshinaga T, Koyama S, Sekijima Y. A Late-onset and Relatively Rapidly Progressive Case of Pure Spinal Form Cerebrotendinous Xanthomatosis with a Novel Mutation in the CYP27A1 Gene. Internal Medicine. 2020;59(20):2587-2591. https://doi.org/10.2169/internalmedicine.5037-20
  31. Verrips A, Nijeholt GJ, Barkhof F, Van Engelen BG, Wesseling P, Luyten JA, Wevers RA, Stam J, Wokke JH, van den Heuvel LP, Keyser A, Gabreëls FJ. Spinal xanthomatosis: a variant of cerebrotendinous xanthomatosis. Brain. 1999;122(Pt 8):1589-1595. https://doi.org/10.1093/brain/122.8.1589
  32. Coutinho P, Ruano L, Loureiro JL, Cruz VT, Barros J, Tuna A, Barbot C, Guimarães J, Alonso I, Silveira I, Sequeiros J, Marques Neves J, Serrano P, Silva MC. Hereditary ataxia and spastic paraplegia in Portugal: a population-based prevalence study. JAMA Neurology. 2013;70(6):746-755.  https://doi.org/10.1001/jamaneurol.2013.1707
  33. Hentati A, Pericak-Vance MA, Hung WY, Belal S, Laing N, Boustany RM, Hentati F, Ben Hamida M, Siddique T. Linkage of “pure” autosomal recessive familial spastic paraplegia to chromosome 8 markers and evidence of genetic locus heterogeneity. Human Molecular Genetics. 1994;3(8):1263-1267. https://doi.org/10.1093/hmg/3.8.1263
  34. Klebe S, Durr A, Bouslam N, Grid D, Paternotte C, Depienne C, Hanein S, Bouhouche A, Elleuch N, Azzedine H, Poea-Guyon S, Forlani S, Denis E, Charon C, Hazan J, Brice A, Stevanin G. Spastic paraplegia 5: locus refinement, candidate gene analysis and clinical description. American Journal of Medical Genetics. 2007;144B(7):854-861.  https://doi.org/10.1002/ajmg.b.30518
  35. Topaloğlu H, Pinarli G, Erdem H, Gücüyener K, Karaduman A, Topçu M, Akarsu AN, Ozgüç M. Clinical observations in autosomal recessive spastic paraplegia in childhood and further evidence for genetic heterogeneity. Neuropediatrics. 1998;29(4):189-194.  https://doi.org/10.1055/s-2007-973559
  36. Tsaousidou MK, Ouahchi K, Warner TT, Yang Y, Simpson MA, Laing NG, Wilkinson PA, Madrid RE, Patel H, Hentati F, Patton MA, Hentati A, Lamont PJ, Siddique T, Crosby AH. Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. American Journal of Human Genetics. 2008;82(2):510-515.  https://doi.org/10.1016/j.ajhg.2007.10.001
  37. Schüle R, Brandt E, Karle KN, Tsaousidou M, Klebe S, Klimpe S, Auer-Grumbach M, Crosby AH, Hübner CA, Schöls L, Deufel T, Beetz C. Analysis of CYP7B1 in non-consanguineous cases of hereditary spastic paraplegia. Neurogenetics. 2009;10(2):97-104.  https://doi.org/10.1007/s10048-008-0158-9
  38. Biancheri R, Ciccolella M, Rossi A, Tessa A, Cassandrini D, Minetti C, Santorelli FM. White matter lesions in spastic paraplegia with mutations in SPG5/CYP7B1. Neuromuscular Disorders. 2009;19(1):62-65. 
  39. Criscuolo C, Filla A, Coppola G, Rinaldi C, Carbone R, Pinto S, Wang Q, de Leva MF, Salvatore E, Banfi S, Brunetti A, Quarantelli M, Geschwind DH, Pappatà S, De Michele G. Two novel CYP7B1 mutations in Italian families with SPG5: a clinical and genetic study. Journal of Neurology. 2009;256(8):1252-1257. https://doi.org/10.1007/s00415-009-5109-3
  40. Goizet C, Boukhris A, Durr A, Beetz C, Truchetto J, Tesson C, Tsaousidou M, Forlani S, Guyant-Maréchal L, Fontaine B, Guimarães J, Isidor B, Chazouillères O, Wendum D, Grid D, Chevy F, Chinnery PF, Coutinho P, Azulay JP, Feki I, Mochel F, Wolf C, Mhiri C, Crosby A, Brice A, Stevanin G. CYP7B1 mutations in pure and complex forms of hereditary spastic paraplegia type 5. Brain. 2009;132(Pt 6):1589-1600. https://doi.org/10.1093/brain/awp073
  41. Marelli C, Lamari F, Rainteau D, Lafourcade A, Banneau G, Humbert L, Monin ML, Petit E, Debs R, Castelnovo G, Ollagnon E, Lavie J, Pilliod J, Coupry I, Babin PJ, Guissart C, Benyounes I, Ullmann U, Lesca G, Thauvin-Robinet C, Labauge P, Odent S, Ewenczyk C, Wolf C, Stevanin G, Hajage D, Durr A, Goizet C, Mochel F. Plasma oxysterols: biomarkers for diagnosis and treatment in spastic paraplegia type 5. Brain. 2018;141(1):72-84.  https://doi.org/10.1093/brain/awx297
  42. Mignarri A, Malandrini A, Del Puppo M, Magni A, Monti L, Ginanneschi F, Tessa A, Santorelli FM, Federico A, Dotti MT. Treatment of SPG5 with cholesterol-lowering drugs. Journal of Neurology. 2015;262(12):2783-2785. https://doi.org/10.1007/s00415-015-7971-5
  43. Tang YP, Gong JY, Setchell KDR, Zhang W, Zhao J, Wang JS. Successful treatment of infantile oxysterol 7alpha-hydroxylase deficiency with oral chenodeoxycholic acid. BMC Gastroenterology. 2021;21(1):163.  https://doi.org/10.1186/s12876-021-01749-x
  44. Stiles AR, McDonald JG, Bauman DR, Russell DW. CYP7B1: one cytochrome P450, two human genetic diseases, and multiple physiological functions. Journal of Biological Chemistry. 2009;284(42):28485-28489. https://doi.org/10.1074/jbc.R109.042168
  45. Mignarri A, Malandrini A, Del Puppo M, Magni A, Monti L, Ginanneschi F, Tessa A, Santorelli FM, Federico A, Dotti MT. Hereditary spastic paraplegia type 5: a potentially treatable disorder of cholesterol metabolism. Journal of Neurology. 2014;261(3):617-619.  https://doi.org/10.1007/s00415-014-7253-7
  46. Clayton PT, Casteels M, Mieli-Vergani G, Lawson AM. Familial giant cell hepatitis with low bile acid concentrations and increased urinary excretion of specific bile alcohols: a new inborn error of bile acid synthesis? Pediatric Research. 1995;37(4 Pt 1):424-431.  https://doi.org/10.1203/00006450-199504000-00007
  47. Lipiński P, Klaudel-Dreszler M, Ciara E, Jurkiewicz D, Płoski R, Cielecka-Kuszyk J, Socha P, Jankowska I. Sterol 27-Hydroxylase Deficiency as a Cause of Neonatal Cholestasis: Report of 2 Cases and Review of the Literature. Frontiers in Pediatrics. 2021;8:616582. https://doi.org/10.3389/fped.2020.616582
  48. Duell PB, Salen G, Eichler FS, DeBarber AE, Connor SL, Casaday L, Jayadev S, Kisanuki Y, Lekprasert P, Malloy MJ, Ramdhani RA, Ziajka PE, Quinn JF, Su KG, Geller AS, Diffenderfer MR, Schaefer EJ. Diagnosis, treatment, and clinical outcomes in 43 cases with cerebrotendinous xanthomatosis. Journal of Clinical Lipidology. 2018;12(5):1169-1178. https://doi.org/10.1016/j.jacl.2018.06.008
  49. Nie S, Chen G, Cao X, Zhang Y. Cerebrotendinous xanthomatosis: a comprehensive review of pathogenesis, clinical manifestations, diagnosis, and management. Orphanet Journal of Rare Diseases. 2014;9:179.  https://doi.org/10.1186/s13023-014-0179-4
  50. Salen G, Steiner RD. Epidemiology, diagnosis, and treatment of cerebrotendinous xanthomatosis (CTX). Journal of Inherited Metabolic Disease. 2017;40(6):771-781.  https://doi.org/10.1007/s10545-017-0093-8
  51. Gong JY, Setchell KDR, Zhao J, Zhang W, Wolfe B, Lu Y, Lackner K, Knisely AS, Wang NL, Hao CZ, Zhang MH, Wang JS. Severe neonatal cholestasis in cerebrotendinous xanthomatosis: genetics, immunostaining, mass spectrometry. Journal of Pediatric Gastroenterology and Nutrition. 2017;65(5):561-568.  https://doi.org/10.1097/MPG.0000000000001730
  52. Shen CH, Wang ZX. Liver transplantation due to cerebrotendinous xanthomatosis end-stage liver disease. World Journal of Pediatrics. 2018;14(4):414-415.  https://doi.org/10.1007/s12519-018-0151-9
  53. von Bahr S, Björkhem I, Van’t Hooft F, Alvelius G, Nemeth A, Sjövall J, Fischler B. Mutation in the sterol 27-hydroxylase gene associated with fatal cholestasis in infancy. Journal of Pediatric Gastroenterology and Nutrition. 2005;40(4):481-486.  https://doi.org/10.1097/01.mpg.0000150419.23031.2a
  54. Clayton PT, Casteels M, Mieli-Vergani G, Lawson AM. Familial giant cell hepatitis with low bile acid concentrations and increased urinary excretion of specific bile alcohols. A new inborn error of bile acid synthesis? Pediatric Research. 1995;37(4 Pt 1):424-431.  https://doi.org/10.1203/00006450-199504000-00007
  55. Lipiński P, Ciara E, Jurkiewicz D, Pollak A, Wypchło M, Płoski R, Cielecka-Kuszyk J, Socha P, Pawłowska J, Jankowska I. Targeted next-generation sequencing in diagnostic approach to monogenic cholestatic liver disorders-single-center experience. Frontiers in Pediatrics. 2020;8:414.  https://doi.org/10.3389/fped.2020.00414
  56. Berginer VM, Salen G, Shefer S. Long-term treatment of cerebrotendinous xanthomatosis with chenodeoxycholic acid. New England Journal of Medicine. 1984;311(26):1649-1652. https://doi.org/10.1056/NEJM198412273112601
  57. Mandia D, Chaussenot A, Besson G, Lamari F, Castelnovo G, Curot J, Duval F, Giral P, Lecerf JM, Roland D, Pierdet H, Douillard C, Nadjar Y. Cholic acid as a treatment for cerebrotendinous xanthomatosis in adults. Journal of Neurology. 2019;266(8): 2043-2050. https://doi.org/10.1007/s00415-019-09377-y
  58. Stelten BML, Huidekoper HH, van de Warrenburg BPC, Brilstra EH, Hollak CEM, Haak HR, Kluijtmans LAJ, Wevers RA, Verrips A. Long-term treatment effect in cerebrotendinous xanthomatosis depends on age at treatment start. Neurology. 2019;92(2):e83-e95.  https://doi.org/10.1212/WNL.0000000000006731
  59. Wong JC, Walsh K, Hayden D, Eichler FS. Natural history of neurological abnormalities in cerebrotendinousxanthomatosis. Journal of Inherited Metabolic Disease. 2018;41(4):647-656.  https://doi.org/10.1007/s10545-018-0152-9
  60. Huidekoper HH, Vaz FM, Verrips A, Bosch AM. Hepatotoxicity due to chenodeoxycholic acid supplementation in an infant with cerebrotendinous xanthomatosis: implications for treatment. European Journal of Pediatrics. 2016;175(1):143-146.  https://doi.org/10.1007/s00431-015-2584-7
  61. Degrassi I, Amoruso C, Giordano G, Del Puppo M, Mignarri A, Dotti MT, Naturale M, Nebbia G. Case report: early treatment with chenodeoxycholic acid in cerebrotendinous xanthomatosis presenting as neonatal cholestasis. Frontiers in Pediatrics. 2020;8:382.  https://doi.org/10.3389/fped.2020.00382
  62. Koopman BJ, Wolthers BG, van der Molen JC, Nagel GT, Waterreus RJ, Oosterhuis HJ. Capillary gas chromatographic determinations of urinary bile acids and bile alcohols in CTX patients proving the ineffectivity of ursodeoxycholic acid treatment. Clinica Chimica Acta. 1984;142(1):103-111.  https://doi.org/10.1016/0009-8981(84)90105-0
  63. Jahnel J, Zöhrer E, Fischler B, D’Antiga L, Debray D, Dezsofi A, Haas D, Hadzic N, Jacquemin E, Lamireau T, Maggiore G, McKiernan PJ, Calvo PL, Verkade HJ, Hierro L, McLin V, Baumann U, Gonzales E. Attempt to determine the prevalence of two inborn errors of primary bile acid synthesis: results of a European survey. Journal of Pediatric Gastroenterology and Nutrition. 2017;64(6):864-868.  https://doi.org/10.1097/MPG.0000000000001546
  64. Clayton PT, Verrips A, Sistermans E, Mann A, Mieli-Vergani G, Wevers R. Mutations in the cholesterol 27-hydoxylase gene (CYP27A) cause hepatitis of infancy as well as cerebrotendinous xanthomatosis. Journal of Inherited Metabolic Disease. 2002;25(6): 501-513.  https://doi.org/10.1023/a:1021211520034
  65. Bossi G, Giordano G, Rispoli GA, Maggiore G, Naturale M, Marchetti D, Iascone M. Atypical clinical presentation and successful treatment with oral cholic acid of a child with defective bile acid synthesis due to a novel mutation in the HSD3B7 gene. Pediatric Reports. 2017;9(3):7266. https://doi.org/10.4081/pr.2017.7266
  66. Fickert P, Krones E, Pollheimer MJ, Thueringer A, Moustafa T, Silbert D, Halilbasic E, Yang M, Jaeschke H, Stokman G, Wells RG, Eller K, Rosenkranz AR, Eggertsen G, Wagner CA, Langner C, Denk H, Trauner M. Bile acids trigger cholemic nephropathy in common bile-duct-ligated mice. Hepatology. 2013; 58(6):2056-2069. https://doi.org/10.1002/hep.26599
  67. Fischler B, Bodin K, Stjernman H, Olin M, Hansson M, Sjövall J, Björkhem I. Cholestatic liver disease in adults may be due to an inherited defect in bile acid biosynthesis. Journal of Internal Medicine. 2007;262(2):254-262.  https://doi.org/10.1111/j.1365-2796.2007.01814.x
  68. Al-Hussaini AA, Setchell KDR, AlSaleem B, Heubi JE, Lone K, Davit-Spraul A, Jacquemin E. Bile acid synthesis disorders in Arabs: a 10-year screening study. Journal of Pediatric Gastroenterology and Nutrition. 2017;65(6):613-620.  https://doi.org/10.1097/MPG.0000000000001734
  69. Wang NL, Lu Y, Gong JY, Xie XB, Lin J, Abuduxikuer K, Zhang MH, Wang JS. Molecular findings in children with inherited intrahepatic cholestasis. Pediatric Research. 2020;87(1):112-117.  https://doi.org/10.1038/s41390-019-0548-8
  70. Hoffman-Andrews L. The known unknown: the challenges of genetic variants of uncertain significance in clinical practice. Journal of Law and the Biosciences. 2018;4(3):648-657.  https://doi.org/10.1093/jlb/lsx038
  71. Starita LM, Ahituv N, Dunham MJ, Kitzman JO, Roth FP, Seelig G, Shendure J, Fowler DM. Variant interpretation: functional assays to the rescue. American Journal of Human Genetics. 2017;101(3):315-325.  https://doi.org/10.1016/j.ajhg.2017.07.014
  72. Subramaniam P, Clayton PT, Portmann BC, Mieli-Vergani G, Hadzić N. Variable clinical spectrum of the most common inborn error of bile acid metabolism — 3beta-hydroxy-Delta 5-C27-steroid dehydrogenase deficiency. Journal of Pediatric Gastroenterology and Nutrition. 2010;50(1):61-66.  https://doi.org/10.1097/MPG.0b013e3181b47b34
  73. Gonzales E, Gerhardt MF, Fabre M, Setchell KD, Davit-Spraul A, Vincent I, Heubi JE, Bernard O, Jacquemin E. Oral cholic acid for hereditary defects of primary bile acid synthesis: a safe and effective long-term therapy. Gastroenterology. 2009;137(4):1310-1320.e1-3.  https://doi.org/10.1053/j.gastro.2009.07.043
  74. Horslen SP, Lawson AM, Malone M, Clayton PT. 3 beta-hydroxy-delta 5-C27-steroid dehydrogenase deficiency; effect of chenodeoxycholic acid therapy on liver histology. Journal of Inherited Metabolic Disease. 1992;15(1):38-46.  https://doi.org/10.1007/BF01800342
  75. Kimura A, Mizuochi T, Takei H, Ohtake A, Mori J, Shinoda K, Hashimoto T, Kasahara M, Togawa T, Murai T, Iida T, Nittono H. Bile acid synthesis disorders in Japan: a long-term outcome and an efficacy of chenodeoxycholic acid treatment. Digestive Diseases and Sciences. 2021;66(11):3885-3892. https://doi.org/10.1007/s10620-020-06722-4
  76. Huang HY, Zhou H, Wang H, Chen YX, Fang F. Novel Mutations in the 3β-hydroxy-∆5-C27-steroid Dehydrogenase Gene (HSD3B7) in a Patient with Neonatal Cholestasis. Chinese Medical Journal. 2016;129(1):98-100.  https://doi.org/10.4103/0366-6999.172603
  77. Lemonde HA, Custard EJ, Bouquet J, Duran M, Overmars H, Scambler PJ, Clayton PT. Mutations in SRD5B1 (AKR1D1), the gene encoding delta(4)-3-oxosteroid 5beta-reductase, in hepatitis and liver failure in infancy. Gut. 2003;52(10):1494-1499. https://doi.org/10.1136/gut.52.10.1494
  78. Zhao J, Fang LJ, Setchell KD, Chen R, Li LT, Wang JS. Primary ∆4-3-oxosteroid 5β-reductase deficiency: two cases in China. World Journal of Gastroenterology. 2012;18(47):7113-7117. https://doi.org/10.3748/wjg.v18.i47.7113
  79. Kimura A, Suzuki M, Murai T, Kurosawa T, Tohma M, Sata M, Inoue T, Hoshiyama A, Nakashima E, Yamashita Y, Fujisawa T, Kato H. Urinary 7alpha-hydroxy-3-oxochol-4-en-24-oic and 3-oxochola-4,6-dien-24-oic acids in infants with cholestasis. Journal of Hepatology. 1998;28(2):270-279.  https://doi.org/10.1016/0168-8278(88)80014-x
  80. Inoue T, Kimura A, Aoki K, Tohma M, Kato H. Developmental pattern of 3-oxo-delta 4 bile acids in neonatal bile acid metabolism. Archives of Disease in Childhood. Fetal and Neonatal Edition. 1997;77(1):F52-56.  https://doi.org/10.1136/fn.77.1.f52
  81. Clayton PT, Patel E, Lawson AM, Carruthers RA, Tanner MS, Strandvik B, Egestad B, Sjövall J. 3-Oxo-delta 4 bile acids in liver disease. Lancet. 1988;1(8597):1283-1284. https://doi.org/10.1016/s0140-6736(88)92104-6
  82. Kimura A, Endo F, Kagimoto S, Inoue T, Suzuki M, Kurosawa T, Tohma M, Fujisawa T, Kato H. Tyrosinemia type I-like disease: a possible manifestation of 3-oxo-delta 4-steroid 5 beta-reductase deficiency. Acta Paediatrica Japonica. 1998;40(3):211-217. 
  83. Shneider BL, Setchell KD, Whitington PF, Neilson KA, Suchy FJ. Delta 4-3-oxosteroid 5 beta-reductase deficiency causing neonatal liver failure and hemochromatosis. Journal of Pediatrics. 1994;124(2):234-238.  https://doi.org/10.1016/s0022-3476(94)70310-8
  84. Siafakas CG, Jonas MM, Perez-Atayde AR. Abnormal bile acid metabolism and neonatal hemochromatosis: a subset with poor prognosis. Journal of Pediatric Gastroenterology and Nutrition. 1997;25(3):321-326.  https://doi.org/10.1097/00005176-199709000-00015
  85. Jacquemin E, Setchell KD, O’Connell NC, Estrada A, Maggiore G, Schmitz J, Hadchouel M, Bernard O. A new cause of progressive intrahepatic cholestasis: 3 beta-hydroxy-C27-steroid dehydrogenase/isomerase deficiency. Journal of Pediatrics. 1994;125(3):379-384.  https://doi.org/10.1016/s0022-3476(05)83280-9
  86. Setchell KDR, Balistreri WF, Piccoli DA, Clerici C. Oral bile acid therapy in the treatment of inborn errors in bile acid synthesis associated with liver disease. In: Paumgartner, G, Stiehl, A, Gerok, W, eds. Falk symposium no. 58. Bile acids as therapeutic agents: from basic science to clinical practice. Freiburg, Germany: Kluwer Academic Publishers; 1990:367-373. 
  87. Kondo KH, Kai MH, Setoguchi Y, Eggertsen G, Sjöblom P, Setoguchi T, Okuda KI, Björkhem I. Cloning and expression of cDNA of human delta 4-3-oxosteroid 5 beta-reductase and substrate specificity of the expressed enzyme. European Journal of Biochemistry. 1994;219(1-2):357-363.  https://doi.org/10.1111/j.1432-1033.1994.tb19947.x
  88. Drury JE, Mindnich R, Penning TM. Characterization of disease-related 5beta-reductase (AKR1D1) mutations reveals their potential to cause bile acid deficiency. Journal of Biological Chemistry. 2010;285(32):24529-24537. https://doi.org/10.1074/jbc.M110.127779
  89. Clayton PT, Mills KA, Johnson AW, Barabino A, Marazzi MG. Delta 4-3-oxosteroid 5 beta-reductase deficiency: failure of ursodeoxycholic acid treatment and response to chenodeoxycholic acid plus cholic acid. Gut. 1996;38(4):623-628.  https://doi.org/10.1136/gut.38.4.623
  90. Zhang MH, Setchell KD, Zhao J, Gong JY, Lu Y, Wang JS. Δ4-3-oxosteroid-5β-reductase deficiency: Responses to oral bile acid therapy and long-term outcomes. World Journal of Gastroenterology. 2019;25(7):859-869.  https://doi.org/10.3748/wjg.v25.i7.859
  91. Ferdinandusse S, Denis S, Clayton PT, Graham A, Rees JE, Allen JT, McLean BN, Brown AY, Vreken P, Waterham HR, Wanders RJ. Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nature Genetics. 2000;24(2):188-191.  https://doi.org/10.1038/72861
  92. Rashedi R, Gelderblom M, Prilop L, Bester M, Haack TB, Zittel S. α-Methylacyl-CoA Racemase Deficiency in a Patient with Ataxia, Spasticity, and Segmental Dystonia. Movement Disorders Clinical Practice. 2024;11(11):1458-1461. https://doi.org/10.1002/mdc3.14176
  93. Setchell KD, Heubi JE, Bove KE, O’Connell NC, Brewsaugh T, Steinberg SJ, Moser A, Squires RH Jr. Liver disease caused by failure to racemize trihydroxycholestanoic acid: gene mutation and effect of bile acid therapy. Gastroenterology. 2003;124(1):217-232.  https://doi.org/10.1053/gast.2003.50017
  94. Thompson SA, Calvin J, Hogg S, Ferdinandusse S, Wanders RJ, Barker RA. Relapsing encephalopathy in a patient with α-methylacyl-CoA racemase deficiency. BMJ Case Reports. 2009;2009: bcr08.2008.0814. https://doi.org/10.1136/bcr.08.2008.0814
  95. Dick D, Horvath R, Chinnery PF. AMACR mutations cause late-onset autosomal recessive cerebellar ataxia. Neurology. 2011; 76(20):1768-1770. https://doi.org/10.1212/WNL.0b013e31821a4484
  96. Clarke CE, Alger S, Preece MA, Burdon MA, Chavda S, Denis S, Ferdinandusse S, Wanders RJ. Tremor and deep white matter changes in alpha-methylacyl-CoA racemase deficiency. Neurology. 2004;63(1):188-189.  https://doi.org/10.1212/01.wnl.0000132841.81250.b7
  97. Haugarvoll K, Johansson S, Tzoulis C, Haukanes BI, Bredrup C, Neckelmann G, Boman H, Knappskog PM, Bindoff LA. MRI characterisation of adult onset alpha-methylacyl-coA racemase deficiency diagnosed by exome sequencing. Orphanet Journal of Rare Diseases. 2013;8:1.  https://doi.org/10.1186/1750-1172-8-1
  98. Smith EH, Gavrilov DK, Oglesbee D, Freeman WD, Vavra MW, Matern D, Tortorelli S. An adult onset case of alpha-methyl-Acyl-CoA racemase deficiency. Journal of Inherited Metabolic Disease. 2010;33(Suppl 3):S349-S353. https://doi.org/10.1007/s10545-010-9183-6
  99. Chong CP, Mills PB, McClean P, Gissen P, Bruce C, Stahlschmidt J, Knisely AS, Clayton PT. Bile acid-CoA ligase deficiency — a new inborn error of bile acid metabolism. Journal of Inherited Metabolic Disease. 2012;35(3):521-530.  https://doi.org/10.1007/s10545-011-9416-3
  100. Hadžić N, Bull LN, Clayton PT, Knisely AS. Diagnosis in bile acid-CoA: amino acid N-acyltransferase deficiency. World Journal of Gastroenterology. 2012;18(25):3322-3326.
  101. Hubbard B, Doege H, Punreddy S, Wu H, Huang X, Kaushik VK, Mozell RL, Byrnes JJ, Stricker-Krongrad A, Chou CJ, Tartaglia LA, Lodish HF, Stahl A, Gimeno RE. Mice deleted for fatty acid transport protein 5 have defective bile acid conjugation and are protected from obesity. Gastroenterology. 2006;130(4):1259-1269. https://doi.org/10.1053/j.gastro.2006.02.012
  102. Knisely AS, Gissen P. Trafficking and transporter disorders in pediatric cholestasis. Clinics in Liver Disease. 2010;14(4):619-633.  https://doi.org/10.1016/j.cld.2010.08.001
  103. Carlton VE, Harris BZ, Puffenberger EG, Batta AK, Knisely AS, Robinson DL, Strauss KA, Shneider BL, Lim WA, Salen G, Morton DH, Bull LN. Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT. Nature Genetics. 2003;34(1):91-96.  https://doi.org/10.1038/ng1147
  104. Hofmann AF, Strandvik B. Defective bile acid amidation: predicted features of a new inborn error of metabolism. Lancet. 1988; 2(8606):311-313.  https://doi.org/10.1016/s0140-6736(88)92359-8
  105. Heubi JE, Setchell KD, Jha P, Buckley D, Zhang W, Rosenthal P, Potter C, Horslen S, Suskind D. Treatment of bile acid amidation defects with glycocholic acid. Hepatology. 2015;61(1):268-274.  https://doi.org/10.1002/hep.27401
  106. Heubi JE, Setchell KD, Rosenthal P, Shah S, Buckley D, Jha P, Zhang W, Potter CJ, Suskind D, Bull LN. Oral glycocholic acid treatment of patients with bile acid amidation defects improves growth and fat-soluble vitamin absorption [abstr]. Hepatology. 2009;50(Suppl 4):895A.
  • Kurokawa Y, Honma Y, Sawaki A, Naito Y, Iwagami S, Komatsu Y, Takahashi T, Nishida T, Doi T. Pimitespib in patients with advanced gastrointestinal stromal tumor (CHAPTER-GIST-301): a randomized, double-blind, placebo-controlled phase III trial. Annals of Oncology. 2022;33(9):959-967.  https://doi.org/10.1016/j.annonc.2022.05.518
  • Du CY, Zhou Y, Song C, Wang YP, Jie ZG, He YL, Liang XB, Cao H, Yan ZS, Shi YQ. Is there a role of surgery in patients with recurrent or metastatic gastrointestinal stromal tumours responding to imatinib: A prospective randomised trial in China. European Journal of Cancer. 2014;50(10):1772-1778. https://doi.org/10.1016/j.ejca.2014.03.280
  • McAuliffe JC, Hunt KK, Lazar AJ, Choi H, Qiao W, Thall P, Pollock RE, Benjamin RS, Trent JC. A Randomized, Phase II Study of Preoperative plus Postoperative Imatinib in GIST: Evidence of Rapid Radiographic Response and Temporal Induction of Tumor Cell Apoptosis. Annals of Surgical Oncology. 2009;16(4):910-919.  https://doi.org/10.1245/s10434-008-0177-7
  • Corless CL, Ballman KV, Antonescu C, Blanke CD, Blackstein ME, Demetri GD, von Mehren M, Maki RG, Pisters PW, DeMatteo RP. Relation of tumor pathologic and molecular features to outcome after surgical resection of localized primary gastrointestinal stromal tumor (GIST): Results of the intergroup phase III trial ACOSOG Z9001. Journal of Clinical Oncology. 2010;28(15 Suppl):10006-10006. https://doi.org/10.1200/jco.2010.28.15_suppl.10006
  • Cousin S. A Phase I/II Study of Regorafenib Plus Avelumab in Solid Tumors (REGOMUNE). Accessed August 20, 2024. https://clinicaltrials.gov/study/NCT03475953#more-information
  • Efficacy and Safety of Famitinib Versus Sunitinib in the Treatment of Advanced Gastrointestinal Stromal Tumour Patients After Failure of Imatinib. Accessed August 20, 2024. https://clinicaltrials.gov/study/NCT0440922
  • Cogent Biosciences. (Peak) A Phase 3 Randomized Trial of CGT9486+Sunitinib vs. Sunitinib in Subjects With Gastrointestinal Stromal Tumors. Accessed August 20, 2024. https://clinicaltrials.gov/ct2/show/NCT05208047
  • Matsumoto S, Takayama T, Wakatsuki K, Enomoto K, Tanaka T, Migita K, Takano M, Nakajima Y. An esophageal gastrointestinal stromal tumor with regional lymph node metastasis. Esophagus. 2010;7(2):115-118.  https://doi.org/10.1007/s10388-010-0231-y
  • Koyanagi K, Nakagawa M, Ozawa S, Nagase T, Seishima R, Kanai T. Thoracoscopic enucleation for small-sized gastrointestinal stromal tumor of the esophagus: report of two cases. Esophagus. 2010;7(4):219-224.  https://doi.org/10.1007/s10388-010-0243-7
  • Masuda T, Toh Y, Kabashima A, Aoki Y, Harimoto N, Ito S, Taomoto J, Ikeda O, Ohga T, Adachi E, Sakaguchi Y, Hirahashi M, Nishiyama K, Okamura T. Overt lymph node metastases from a gastrointestinal stromal tumor of the esophagus. Journal of Thoracic and Cardiovascular Surgery. 2007;134(3):810-811.  https://doi.org/10.1016/j.jtcvs.2007.06.002
  • Kobayashi H, Kiguchi G, Miki A, Uryuhara K, Okada N, Kaihara S, Imai Y, Hosotani R. A case report of giant esophageal gastrointestinal stromal tumor surgically resected after preoperative imatinib treatment. Esophagus. 2011;8(2):119-124.  https://doi.org/10.1007/s10388-011-0264-x
  • Sato H, Kanda T, Hirota S, Bamba T, Sakamoto K, Kosugi SI, Matsuki A, Mashima Y, Watanabe G, Hatakeyama K. Surgical resection of gastrointestinal stromal tumor of esophagus following preoperative imatinib treatment: a case report. Esophagus. 2010;7(1):65-69.  https://doi.org/10.1007/s10388-009-0217-9
  • Miettinen M, Sobin LH, Lasota J. Gastrointestinal Stromal Tumors of the Stomach. American Journal of Surgical Pathology. 2005;29(1):52-68.  https://doi.org/10.1097/01.pas.0000146010.92933
  • Luo Y, Wu Y, Chang X, Huang B, Luo D, Zhang J, Zhang P, Shi H, Fan J, Nie X. Identification of a novel FGFR2-KIAA1217 fusion in esophageal gastrointestinal stromal tumours: A case report. Frontiers in Oncology. 2022;12.  https://doi.org/10.3389/fonc.2022.884814
  • Haller F, Moskalev EA, Faucz FR, Barthelmeß S, Wiemann S, Bieg M, Assie G, Bertherat J, Schaefer IM, Otto C, Rattenberry E, Maher ER, Ströbel P, Werner M, Carney JA, Hartmann A, Stratakis CA, Agaimy A. Aberrant DNA hypermethylation of SDHC: a novel mechanism of tumor development in Carney triad. Endocrine-Related Cancer. 2014;21(4):567-577.  https://doi.org/10.1530/ERC-14-0254
  • Zhang L, Smyrk TC, Young WF, Stratakis CA, Carney JA. Gastric Stromal Tumors in Carney Triad Are Different Clinically, Pathologically, and Behaviorally From Sporadic Gastric Gastrointestinal Stromal Tumors: Findings in 104 Cases. American Journal of Surgical Pathology. 2010;34(1):53-64.  https://doi.org/10.1097/PAS.0b013e3181c20f4f
  • Ricci R, Martini M, Cenci T, Carbone A, Lanza P, Biondi A, Rindi G, Cassano A, Larghi A, Persiani R, Larocca LM. PDGFRA-mutant syndrome. Modern Pathology. 2015;28(7):954-964.  https://doi.org/10.1038/modpathol.2015.56
  • Arita A, Takahashi T, Nakajima K, Kurokawa Y, Hirota S, Nishida T, Yamashita K, Saito T, Tanaka K, Makino T, Yamasaki M, Kawai K, Motoyama Y, Morii E, Eguchi H, Doki Y. Surgery for multiple gastric gastrointestinal stromal tumors and large esophageal diverticulum related to germline mutation of the KIT gene: a case report. Surgical Case Reports. 2023;9(1):183.  https://doi.org/10.1186/s40792-023-01766-w
  • Bachet JB, Landi B, Laurent-Puig P, Italiano A, Le Cesne A, Lévy P, Safar V, Duffaud F, Blay JY, Emile JF. Diagnosis, prognosis and treatment of patients with gastrointestinal stromal tumour (GIST) and germline mutation of KIT exon 13. European Journal of Cancer. 2013;49(11):2531-2541. https://doi.org/10.1016/j.ejca.2013.04.005
  • Ohshima K, Fujiya K, Nagashima T, Ohnami S, Hatakeyama K, Urakami K, Naruoka A, Watanabe Y, Moromizato S, Shimoda Y, Ohnami S, Serizawa M, Akiyama Y, Kusuhara M, Mochizuki T, Sugino T, Shiomi A, Tsubosa Y, Uesaka K, Terashima M, Yamaguchi K. Driver gene alterations and activated signaling pathways toward malignant progression of gastrointestinal stromal tumors. Cancer Science. 2019;110(12):3821-3833. https://doi.org/10.1111/cas.14202
  • Joensuu H, Eriksson M, Hall KS, Hartmann JT, Pink D, Schütte J, Ramadori G, Hohenberger P, Duyster J, Al-Batran SE, Schlemmer M, Bauer S, Wardelmann E, Sarlomo-Rikala M, Nilsson B, Sihto H, Ballman KV, Leinonen M, DeMatteo RP, Reichardt P. Risk factors for gastrointestinal stromal tumor recurrence in patients treated with adjuvant imatinib. Cancer. 2014;120(15):2325-2333. https://doi.org/10.1002/cncr.28669
  • Rubió-Casadevall J, Borràs JL, Carmona-García MC, Ameijide A, Gonzalez-Vidal A, Ortiz MR, Bosch R, Riu F, Parada D, Martí E, Miró J, Sirvent JJ, Galceran J, Marcos-Gragera R. Correlation between mutational status and survival and second cancer risk assessment in patients with gastrointestinal stromal tumors: a population-based study. World Journal of Surgical Oncology. 2015;13(1):47.  https://doi.org/10.1186/s12957-015-0474-0
  • Joensuu H, Rutkowski P, Nishida T, Steigen SE, Brabec P, Plank L, Nilsson B, Braconi C, Bordoni A, Magnusson MK, Sufliarsky J, Federico M, Jonasson JG, Hostein I, Bringuier PP, Emile JF. KIT and PDGFRA Mutations and the Risk of GI Stromal Tumor Recurrence. Journal of Clinical Oncology. 2015;33(6):634-642.  https://doi.org/10.1200/JCO.2014.57.4970
  • Park JW, Cho CH, Jeong DS, Chae HD. Role of 18F-fluoro-2-deoxyglucose Positron Emission Tomography in Gastric GIST: Predicting Malignant Potential Pre-operatively. Journal of Gastric Cancer. 2011;11(3):173-179.  https://doi.org/10.5230/jgc.2011.11.3.173
  • Dendy M, Johnson K, Boffa DJ. Spectrum of FDG uptake in large (>10 cm) esophageal leiomyomas. Journal of Thoracic Disease. 2015;7(12):E648-E651. https://doi.org/10.3978/j.issn.2072-1439.2015.11.64
  • Săftoiu A. Endoscopic ultrasound-guided fine needle aspiration biopsy for the molecular diagnosis of gastrointestinal stromal tumors: shifting treatment options. Journal of Gastrointestinal and Liver Diseases. 2008;17(2):131-133. 
  • Lott S, Schmieder M, Mayer B, Henne-Bruns D, Knippschild U, Agaimy A, Schwab M, Kramer K. Gastrointestinal stromal tumors of the esophagus: evaluation of a pooled case series regarding clinicopathological features and clinical outcome. American Journal of Cancer Research. 2015;5(1):333-343. 
  • Stelow EB, Stanley MW, Lai R, Mallery S. Endoscopic Ultrasound-Guided Fine-Needle Aspiration Findings of Gastrointestinal Leiomyomas and Gastrointestinal Stromal Tumors. American Journal of Clinical Pathology. 2003;119(5):703-708.  https://doi.org/10.1309/UWUV-Q001-0D9W-0HPN
  • Nemeth K, Williams C, Rashid M, Robinson M, Rasheed A. Oesophageal GIST—A rare breed case report and review of the literature. International Journal of Surgery Case Reports. 2015;10: 256-259.  https://doi.org/10.1016/j.ijscr.2015.02.023
  • Lasota J, Miettinen M. Clinical significance of oncogenic KIT and PDGFRA mutations in gastrointestinal stromal tumours. Histopathology. 2008;53(3):245-266.  https://doi.org/10.1111/j.1365-2559.2008.02977.x
  • Gold JS, Gönen M, Gutiérrez A, Broto JM, García-del-Muro X, Smyrk TC, Maki RG, Singer S, Brennan MF, Antonescu CR, Donohue JH, DeMatteo RP. Development and validation of a prognostic nomogram for recurrence-free survival after complete surgical resection of localised primary gastrointestinal stromal tumour: a retrospective analysis. The Lancet Oncology. 2009;10(11):1045-1052. https://doi.org/10.1016/S1470-2045(09)70242-6
  • Wozniak A, Rutkowski P, Piskorz A, Ciwoniuk M, Osuch C, Bylina E, Sygut J, Chosia M, Rys J, Urbanczyk K, Kruszewski W, Sowa P, Siedlecki J, Debiec-Rychter M, Limon J; Polish Clinical GIST Registry. Prognostic value of KIT/PDGFRA mutations in gastrointestinal stromal tumours (GIST): Polish Clinical GIST Registry experience. Annals of Oncology. 2012;23(2):353-360.  https://doi.org/10.1093/annonc/mdr127
  • Yamamoto H, Ebihara Y, Tanaka K, Matsui A, Nakanishi Y, Asano T, Noji T, Kurashima Y, Murakami S, Nakamura T, Tsuchikawa T, Okamura K, Shichinohe T, Hirano S. Robot-assisted thoracoscopic esophagectomy for gastrointestinal stromal tumor of the esophagus: A case report. International Journal of Surgery Case Reports. 2021;86:106335. https://doi.org/10.1016/j.ijscr.2021.106335
  • Marqueen KE, Moshier E, Buckstein M, Ang C. Neoadjuvant therapy for gastrointestinal stromal tumors: A propensity score‐weighted analysis. International Journal of Cancer. 2021;149(1):177-185.  https://doi.org/10.1002/ijc.33536
  • Wang D, Zhang Q, Blanke CD, Demetri GD, Heinrich MC, Watson JC, Hoffman JP, Okuno S, Kane JM, von Mehren M, Eisenberg BL. Phase II Trial of Neoadjuvant/adjuvant Imatinib Mesylate for Advanced Primary and Metastatic/recurrent Operable Gastrointestinal Stromal Tumors: Long-term Follow-up Results of Radiation Therapy Oncology Group 0132. Annals of Surgical Oncology. 2012;19(4):1074-1080. https://doi.org/10.1245/s10434-011-2190-5
  • Nishida T, Kanda T, Nishitani A, Takahashi T, Nakajima K, Ishikawa T, Hirota S. Secondary mutations in the kinase domain of the KIT gene are predominant in imatinib‐resistant gastrointestinal stromal tumor. Cancer Science. 2008;99(4):799-804.  https://doi.org/10.1111/j.1349-7006.2008.00727.x
  • Antonescu CR, Besmer P, Guo T, Arkun K, Hom G, Koryotowski B, Leversha MA, Jeffrey PD, Desantis D, Singer S, Brennan MF, Maki RG, DeMatteo RP. Acquired Resistance to Imatinib in Gastrointestinal Stromal Tumor Occurs Through Secondary Gene Mutation. Clinical Cancer Research. 2005;11(11):4182-4190. https://doi.org/10.1158/1078-0432.CCR-04-2245
  • See full prescribing information for VITRAKVI. Accessed September 10, 2024. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/211710s000lbl.pdf
  • US Food and Drug Administration. Prescribing information — Rozlytrek. Accessed September 10, 2024. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/212725s000lbl.pdf
  • Yebra M, Bhargava S, Kumar A, Burgoyne AM, Tang CM, Yoon H, Banerjee S, Aguilera J, Cordes T, Sheth V, Noh S, Ustoy R, Li S, Advani SJ, Corless CL, Heinrich MC, Kurzrock R, Lippman SM, Fanta PT, Harismendy O, Metallo C, Sicklick JK. Establishment of Patient-Derived Succinate Dehydrogenase-Deficient Gastrointestinal Stromal Tumor Models for Predicting Therapeutic Response. Clinical Cancer Research. 2022;28(1):187-200.  https://doi.org/10.1158/1078-0432.CCR-21-2092
  • Temozolomide (TMZ) In Advanced Succinate Dehydrogenase (SDH)-Mutant/Deficient Gastrointestinal Stromal Tumor (GIST). Accessed September 10, 2024. https://clinicaltrials.gov/study/NCT03556384
  • Dhillon S. Ripretinib: First Approval. Drugs. 2020;80(11):1133-1138. https://doi.org/10.1007/s40265-020-01348-2
  • See full prescribing information for QINLOCK. Accessed September 10, 2024. https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/213973s000lbl.pdf
  • US Food and Drug Administration. FDA approves avapritinib for gastrointestinal stromal tumor with a rare mutation. Accessed September 10, 2024. https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-avapritinib-gastrointestinal-stromal-tumor-rare-mutation
  • Chi P, Qin LX, Nguyen B, Kelly CM, D’Angelo SP, Dickson MA, Gounder MM, Keohan ML, Movva S, Nacev BA, Rosenbaum E, Thornton KA, Crago AM, Yoon S, Ulaner G, Yeh R, Martindale M, Phelan HT, Biniakewitz MD, Warda S, Lee CJ, Berger MF, Schultz ND, Singer S, Hwang S, Chen Y, Antonescu CR, Tap WD. Phase II Trial of Imatinib Plus Binimetinib in Patients With Treatment-Naive Advanced Gastrointestinal Stromal Tumor. Journal of Clinical Oncology. 2022;40(9):997-1008. https://doi.org/10.1200/JCO.21.02029
  • US National Library of Medicine. A study of pimitespib in combination with imatinib in patients with GIST (CHAPTER-GIST-101). Accessed September 10, 2024. https://www.clinicaltrials.gov/ct2/show/NCT05245968
  • Joensuu H, Blay JY, Comandone A, Martin-Broto J, Fumagalli E, Grignani G, Del Muro XG, Adenis A, Valverde C, Pousa AL, Bouché O, Italiano A, Bauer S, Barone C, Weiss C, Crippa S, Camozzi M, Castellana R, Le Cesne A. Dovitinib in patients with gastrointestinal stromal tumour refractory and/or intolerant to imatinib. British Journal of Cancer. 2017;117(9):1278-1285. https://doi.org/10.1038/bjc.2017.290
  • Adis insight. Gastrointestinal stromal tumours. Accessed September 10, 2024. https://adisinsight.springer.com/drugs/800063657
  • US National Library of Medicine. A phase I/II study of regorafenib plus avelumab in solid tumors (REGOMUNE). Accessed September 10, 2024. https://clinicaltrials.gov/ct2/show/NCT03475953
  • US National Library of Medicine. PDR001 plus imatinib for metastatic or unresectable GIST. Accessed September 10, 2024. https://clinicaltrials.gov/ct2/show/NCT03609424
  • Call J, Walentas C, Eickhoff JC, Scherzer N. Survival of gastrointestinal stromal tumor patients in the imatinib era: life raft group observational registry. BMC Cancer. 2012;12(1):90.  https://doi.org/10.1186/1471-2407-12-90
  • Miettinen M, Lasota J. Gastrointestinal stromal tumors: Pathology and prognosis at different sites. Seminars in Diagnostic Pathology. 2006;23(2):70-83.  https://doi.org/10.1053/j.semdp.2006.09.001
  • IJzerman NS, van Werkhoven E, Mohammadi M, Hollander DD, Bleckman RF, Reyners AKL, Desar IME, Gelderblom H, Grünhagen DJ, Mathijssen RHJ, Steeghs N, van der Graaf WTA. Sex differences in patients with gastrointestinal stromal tumours: do they exist and does it affect survival? ESMO Open. 2022;7(6):100649. https://doi.org/10.1016/j.esmoop.2022.100649
  • Volchenko NS, Mamontov AS, Goeva NS. Rare esophageal tumors. Onkologiya. P.A. Herzen Journal of Oncology. 2019;8(6):453.  https://doi.org/10.17116/onkolog20198061453
  • Cohen C, Pop D, Icard P, Berthet JP, Venissac N, Mouroux J. Is There a Place for Thoracoscopic Enucleation of Esophageal Gastrointestinal Stromal Tumors? The Thoracic and Cardiovascular Surgeon. 2019;67(07):585-588.  https://doi.org/10.1055/s-0038-1670662
  • Keung EZ, Raut CP. Management of Gastrointestinal Stromal Tumors. Surgical Clinics of North America. 2017;97(2):437-452.  https://doi.org/10.1016/j.suc.2016.12.001
  • Gronchi A, Raut CP. The Combination of Surgery and Imatinib in GIST: A Reality for Localized Tumors at High Risk, an Open Issue for Metastatic Ones. Annals of Surgical Oncology. 2012;19(4): 1051-1055. https://doi.org/10.1245/s10434-011-2191-4
  • Raut CP, Posner M, Desai J, Morgan JA, George S, Zahrieh D, Fletcher CD, Demetri GD, Bertagnolli MM. Surgical Management of Advanced Gastrointestinal Stromal Tumors After Treatment With Targeted Systemic Therapy Using Kinase Inhibitors. Journal of Clinical Oncology. 2006;24(15):2325-2331. https://doi.org/10.1200/JCO.2005.05.3439
  • Blackstein ME, Blay JY, Corless C, Driman DK, Riddell R, Soulières D, Swallow CJ, Verma S; Canadian Advisory Committee on GIST. Gastrointestinal Stromal Tumours: Consensus Statement on Diagnosis and Treatment. Canadian Journal of Gastroenterology. 2006;20(3):157-163.  https://doi.org/10.1155/2006/434761
  • DeMatteo RP, Maki RG, Singer S, Gonen M, Brennan MF, Antonescu CR. Results of Tyrosine Kinase Inhibitor Therapy Followed by Surgical Resection for Metastatic Gastrointestinal Stromal Tumor. Annals of Surgery. 2007;245(3):347-352.  https://doi.org/10.1097/01.sla.0000236630.93587.59
  • Klug LR, Khosroyani HM, Kent JD, Heinrich MC. New treatment strategies for advanced-stage gastrointestinal stromal tumours. Nature Reviews Clinical Oncology. 2022;19(5):328-341.  https://doi.org/10.1038/s41571-022-00606-4
  • A phase 1, multicenter, open-label, first-in-human study of DS-6157a in patients (pts) with advanced gastrointestinal stromal tumor (GIST). Accessed September 10, 2024. https://meetings.asco.org/abstracts-presentations/208008
  • DS-6157a in Participants with Advanced Gastrointestinal Stromal Tumor (GIST). Accessed September 10, 2024. https://clinicaltrials.gov/ct2/show/NCT04276415
  • Email Confirmation

    An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

    Email Confirmation

    We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.