The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Katasonov A.B.

Curcumin as an ajuvant treatment of depression: mechanisms of action and application prospects

Authors:

Katasonov A.B.

More about the authors

Read: 56030 times


To cite this article:

Katasonov AB. Curcumin as an ajuvant treatment of depression: mechanisms of action and application prospects. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(2):125‑131. (In Russ.)
https://doi.org/10.17116/jnevro2020120021125

Recommended articles:
The gut microbiota in bipo­lar diso­rder. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):28-33
Como­rbidity of depression and deme­ntia: epidemiological, biological and therapeutic aspe­cts. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):113-121
Impact of various reha­bilitation programs on anxiety and depression after surgery of early-stage cervical cancer. Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(5):40-44
Perioperative prevention of bleeding in glaucoma surgery. Russian Annals of Ophthalmology. 2024;(5):118-124
Effi­cacy of alpha-glutamyl-tryptophan in the treatment of chro­nic atro­phic gastritis: case series. Russian Journal of Evidence-Based Gastroenterology. 2024;(4):121-128

References:

  1. Daily JW, Yang M, Park S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: A systematic review and meta-analysis of randomized clinical trials. J Med Food. 2016;19:717-729. https://doi.org/10.1089/jmf.2016.3705
  2. Witkin JM, Li X. Curcumin, an active constituent of the ancient medicinal herb Curcuma longa L.: Some uses and the establishment and biological basis of medical efficacy. CNS Neurol Disord Drug Targets. 2013;12:487-497.
  3. Schmidt FM, Kirkby KC, Lichtblau N. Inflammation and immune regulation as potential drug targets in antidepressant treatment. Current Neuropharmacology. 2016;674-687. https://doi.org/10.2174/1570159X14666160115130414
  4. Stone TW, Forrest CM, Darlington LG. Kynurenine pathway inhibition as a therapeutic strategy for neuroprotection. FEBS J. 2012;279:1386-1397. https://doi.org/10.1111/j.1742-4658.2012.08487.x
  5. Maes M, Leonard BE, Myint AM, Kubera M, Verkerk R. The new ‘5-HT’ hypothesis of depression: Cell-mediated immune activation induces indoleamine 2,3-dioxygenase, which leads to lower plasma tryptophan and an increased synthesis of detrimental tryptophan catabolites (TRYCATs), both of which contribute to the onset of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:702-721. https://doi.org/10.1016/j.pnpbp.2010.12.017
  6. Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, Mawrin C, Brisch R, Bielau H, Meyer zu Schwabedissen L, Bogerts B, Myint AM. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: Evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation. 2011;8:94. https://doi.org/10.1186/1742-2094-8-94
  7. Jeong YI, Kim SW, Jung ID, Lee JS, Chang JH, Lee CM, Chun SH, Yoon MS, Kim GT, Ryu SW, Kim JS, Shin YK, Lee WS, Shin HK, Lee JD, Park YM. Curcumin suppresses the induction of indoleamine 2,3-dioxygenase by blocking the Janus-activated kinase-protein kinase Cdelta-STAT1 signaling pathway in interferongamma- stimulated murine dendritic cells. J Biol Chem. 2009;284:3700-3708. https://doi.org/10.1074/jbc.M807328200
  8. Zhang KS, Li GC, He YW, Yi YM, Liao SL, Wang Z, Du J. Curcumin inhibiting the expression of indoleamine 2,3-dioxygenase induced by IFN-gamma in cancer cells. Zhong Yao Cai. 2008;31:1207-1211.
  9. Kanakasabai S, Casalini E, Walline CC, Mo C, Chearwae W, Bright JJ. Differential regulation of CD4(+) T helper cell responses by curcumin in experimental autoimmune encephalomyelitis. J Nutr Biochem. 2012;23(11):1498-1507. https://doi.org/10.1016/j.jnutbio.2011.10.002
  10. Chen Y, Jiang T, Chen P, Ouyang J, Xu G, Zeng Z, Sun Y. Emerging tendency towards autoimmune process in major depressive patients: A novel insight from Th17 cells. Psychiatry Res. 2011;188:224-230. https://doi.org/10.1016/j.psychres.2010.10.029
  11. Myint AM, Leonard BE, Steinbusch HW, Kim YK. Th1, Th2, and Th3 cytokine alterations in major depression. J Affect Disord. 2005;88:167-173.
  12. Maes M. Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:664-675. https://doi.org/10.1016/j.pnpbp.2010.06.014
  13. Ohishi K, Ueno R, Nishino S, Sakai T, Hayaishi O. Increased level of salivary prostaglandins in patients with major depression. Biol Psychiatry. 1988;23:326-334.
  14. Calabrese JR, Skwerer RG, Barna B, Gulledge AD, Valenzuela R, Butkus A, Subichin S, Krupp NE. Depression, immunocompetence, and prostaglandins of the E series. Psychiatry Res. 1986;17:41-47.
  15. Galecki P, Galecka E, Maes M, Chamielec M, Orzechowska A, Bobińska K, Lewiński A, Szemraj J. The expression of genes encoding for COX-2, MPO, iNOS, and sPLA2-IIA in patients with recurrent depressive disorder. J Affect Disord. 2012;138:360-366. https://doi.org/10.1016/j.jad.2012.01.016
  16. Akhondzadeh S, Jafari S, Raisi F, Nasehi AA, Ghoreishi A, Salehi B, Mohebbi-Rasa S, Raznahan M, Kamalipour A. Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depress Anxiety. 2009;26:607-611. https://doi.org/10.1002/da.20589
  17. Muller N, Schwarz MJ, Dehning S, Douhe A, Cerovecki A, Goldstein-Müller B, Spellmann I, Hetzel G, Maino K, Kleindienst N, Möller HJ, Arolt V, Riedel M. The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: Results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Mol Psychiatry. 2006;11:680-684.
  18. Abbasi SH, Hosseini F, Modabbernia A, Ashrafi M, Akhondzadeh S. Effect of celecoxib add-on treatment on symptoms and serum IL-6 concentrations in patients with major depressive disorder: Randomized double-blind placebo-controlled study. J Affect Disord. 2012;141:308-314. https://doi.org/10.1016/j.jad.2012.03.033
  19. Moriyuki K, Sekiguchi F, Matsubara K, Nishikawa H, Kawabata A. Curcumin inhibits the proteinase-activated receptor-2-triggered prostaglandin E2 production by suppressing cyclooxygenase-2 upregulation and Aktdependent activation of nuclear factor-.B in human lung epithelial cells. J Pharmacol Sci. 2010;114:225-229.
  20. Lee KH, Abas F, Alitheen NB, Shaari K, Lajis NH, Ahmad S. A curcumin derivative, 2,6-bis(2,5-dimethoxybenzylidene)-cyclohexanone (BDMC33) attenuates prostaglandin E2 synthesis via selective suppression of cyclooxygenase-2 in IFN-g/LPS-stimulated macrophages. Molecules. 2011;16:9728-9738. https://doi.org/10.3390/molecules16119728
  21. Ak T, Gulcin I. Antioxidant and radical scavenging properties of curcumin. Chem Biol Interact. 2008;174:27-37. https://doi.org/10.1016/j.cbi.2008.05.003
  22. Manikandan R, Beulaja M, Thiagarajan R, Priyadarsini A, Saravanan R, Arumugam M. Ameliorative effects of curcumin against renal injuries mediated by inducible nitric oxide synthase and nuclear factor kappa B during gentamicin-induced toxicity in Wistar rats. Eur J Pharmacol. 2011;670:578-585. https://doi.org/10.1016/j.ejphar.2011.08.037
  23. Naik SR, Thakare VN, Patil SR. Protective effect of curcumin on experimentally induced inflammation, hepatotoxicity and cardiotoxicity in rats: Evidence of its antioxidant property. Exper Toxicol Pathol. 2011;63:419-431. https://doi.org/10.1016/j.etp.2010.03.001
  24. Scapagnini G, Vasto S, Abraham NG, Caruso C, Zella D, Fabio G. Modulation of Nrf2/ARE pathway by food polyphenols: A nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol Neurobiol. 2011;44:192-201. https://doi.org/10.1007/s12035-011-8181-5
  25. Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:676-692. https://doi.org/10.1016/j.pnpbp.2010.05.004
  26. Gardner A, Boles RG. Mitochondrial energy depletion in depression with somatization. Psychother Psychosom. 2008;77:127-129. https://doi.org/10.1159/000112891
  27. Gardner A, Johansson A, Wibom R, Nennesmo I, von Döbeln U, Hagenfeldt L, Hällström T. Alterations of mitochondrial function and correlations with personality traits in selected major depressive disorder patients. J Affect Disord. 2003;76:55-68.
  28. Fattal O, Link J, Quinn K, Cohen BH, Franco K. Psychiatric comorbidity in 36 adults with mitochondrial cytopathies. CNS Spectr. 2007;12:429-438.
  29. Sood PK, Nahar U, Nehru B. Curcumin attenuates aluminuminduced oxidative stress and mitochondrial dysfunction in rat brain. Neurotox Res. 2011;20:351-361. https://doi.org/10.1007/s12640-011-9249-8
  30. Wei QY, Chen WF, Zhou B, Yang L, Liu ZL. Inhibition of lipid peroxidation and protein oxidation in rat liver mitochondria by curcumin and its analogues. Biochim Biophys Acta. 2006;1760:70-77.
  31. Suzuki E, Yagi G, Nakaki T, Kanba S, Asai M. Elevated plasma nitrate levels in depressive states. J Affect Disord. 2001;63:221-224.
  32. Lee BH, Lee SW, Yoon D, Lee HJ, Yang JC, Shim SH, Kim DH, Ryu SH, Han C, Kim YK. Increased plasma nitric oxide metabolites in suicide attempters. Neuropsychobiology. 2006;53:127-132.
  33. Joca SR, Guimaraes FS. Inhibition of neuronal nitric oxide synthase in the rat hippocampus induces antidepressant-like effects. Psychopharmacology (Berl). 2006;185:298-305.
  34. Maes M, Mihaylova I, Kubera M, Leunis JC, Geffard M. IgM-mediated autoimmune responses directed against multiple neoepitopes in depression: New pathways that underpin the inflammatory and neuroprogressive pathophysiology. J Affect Disord. 2011;135:414-418. https://doi.org/10.1016/j.jad.2011.08.023
  35. Gilhotra N, Dhingra D. GABAergic and nitriergic modulation by curcumin for its antianxiety-like activity in mice. Brain Res. 2010;1352:167-175. https://doi.org/10.1016/j.brainres.2010.07.007
  36. Braidy N, Grant R, Adams S, Guillemin GJ. Neuroprotective effects of naturally occurring polyphenols on quinolinic acid-induced excitotoxicity in human neurons. FEBS J. 2010;277:368-382. https://doi.org/10.1111/j.1742-4658.2009.07487.x
  37. Kumar A, Singh A. Possible nitric oxide modulation in protective effect of (Curcuma longa, Zingiberaceae) against sleep deprivation-induced behavioral alterations and oxidative damage in mice. Phytomedicine. 2008;15:577-586. https://doi.org/10.1016/j.phymed.2008.02.003
  38. Li YC, Wang FM, Pan Y, Qiang LQ, Cheng G, Zhang WY, Kong LD. Antidepressant-like effects of curcumin on serotonergic receptor-coupled AC-cAMP pathway in chronic unpredictable mild stress of rats. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:435-449. https://doi.org/10.1016/j.pnpbp.2009.01.006
  39. Huang Z, Zhong XM, Li ZY, Feng CR, Pan AJ, Mao QQ. Curcumin reverses corticosterone- induced depressive-like behavior and decrease in brain BDNF levels in rats. Neurosci Lett. 2011;493:145-148. https://doi.org/10.1016/j.neulet.2011.02.030
  40. Xu Y, Li S, Vernon MM, Pan J, Chen L, Barish PA, Zhang Y, Acharya AP, Yu J, Govindarajan SS, Boykin E, Pan X, O’Donnell JM, Ogle WO. Curcumin prevents corticosteroneinduced neurotoxicity and abnormalities of neuroplasticity via 5-HT receptor pathway. J Neurochem. 2011;118:784-795. https://doi.org/10.1111/j.1471-4159.2011.07356.x
  41. Arora V, Kuhad A, Tiwari V, Chopra K. Curcumin ameliorates reserpineinduced pain-depression dyad: Behavioural, biochemical, neurochemical and molecular evidences. Psychoneuroendocrinology. 2011;36:1570-1581. https://doi.org/10.1016/j.psyneuen.2011.04.012
  42. Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: Involvement of serotonin and dopamine system. Psychopharmacology (Berl). 2008;201:435-442. https://doi.org/10.1007/s00213-008-1300-y
  43. Wang R, Xu Y, Wu HL, Li YB, Li YH, Guo JB, Li XJ. The antidepressant effects of curcumin in the forced swimming test involve 5-HT1 and 5-HT2 receptors. Eur J Pharmacol. 2008;578:43-50.
  44. Xia X, Cheng G, Pan Y, Xia ZH, Kong LD. Behavioral, neurochemical and neuroendocrine effects of the ethanolic extract from Curcuma longa L. in the mouse forced swimming test. J Ethnopharmacol. 2007;110:356-363.
  45. Sanmukhani J, Anovadiya A, Tripathi CB. Evaluation of antidepressant like activity of curcumin and its combination with fluoxetine and imipramine: An acute and chronic study. Acta Pol Pharm. 2011;68:769-775.
  46. Song C, Leonard BE. The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev. 2005;29:627-647.
  47. Xu Y, Ku BS, Yao HY, Lin YH, Ma X, Zhang YH, Li XJ. Antidepressant effects of curcumin in the forced swim test and olfactory bulbectomy models of depression in rats. Pharmacol Biochem Behav. 2005;82:200-206.
  48. Al-Karawi D, Mamoori DA, Tayyar Y. The Role of Curcumin Administration in Patients with Major Depressive Disorder: Mini Meta-Analysis of Clinical Trials. Phytother Res. 2016;30:175-183. https://doi.org/10.1002/ptr.5524
  49. Ng QX, Koh SSH, Chan HW, Ho CYX. Clinical Use of Curcumin in Depression: A Meta-Analysis. J Am Med Dir Assoc. 2017;18(6):503-508. https://doi.org/10.1016/j.jamda.2016.12.071
  50. Lopresti AL, Drummond PD. Efficacy of curcumin, and a saffron/curcumin combination for the treatment of major depression: A randomised, double-blind, placebo-controlled study. Journal of Affective Disorders. 2017;1207:188-196. https://doi.org/10.1016/j.jad.2016.09.047
  51. Kanchanatawan B, Tangwongchai S, Sughondhabhirom A, Suppapitiporn S, Hemrunrojn S, Carvalho AF, Maes M. Add-on Treatment with Curcumin Has Antidepressive Effects in Thai Patients with Major Depression: Results of a Randomized Double-Blind Placebo-Controlled Study. Neurotox Res. 2018;33(3):621-633. https://doi.org/10.1007/s12640-017-9860-4
  52. Tsuda T. Curcumin as a functional food-derived factor: degradation products, metabolites, bioactivity, and future perspectives. Food Funct. 2018;21:9(2):705-714. https://doi.org/10.1039/c7fo01242j
  53. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA.The Essential Medicinal Chemistry of Curcumin. J Med Chem. 2017;60(5):1620-1637. https://doi.org/10.1021/acs.jmedchem.6b00975
  54. Fasano A, Shea-Donohue T. Mechanisms of disease: The role of intestinal barrier function in the pathogenesis of gastrointestinal autoimmune diseases. Nat Clin Pract Gastroenterol Hepatol. 2005;2:416-422.
  55. Miller AL. The pathogenesis, clinical implications, and treatment of intestinal hyperpermeability. Alt Med Rev. 1997;2(5):330-345.
  56. Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP. Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation. 2008;5:15. https://doi.org/10.1186/1742-2094-5-15
  57. Huang WT, Niu KC, Chang CK, Lin MT, Chang CP. Curcumin inhibits the increase of glutamate, hydroxyl radicals and PGE2 in the hypothalamus and reduces fever during LPS-induced systemic inflammation in rabbits. Eur J Pharmacol. 2008;593:105-111. https://doi.org/10.1016/j.ejphar.2008.07.017
  58. Dobos N, de Vries EF, Kema IP, Patas K, Prins M, Nijholt IM, Dierckx RA, Korf J, den Boer JA, Luiten PG, Eisel UL. The role of indoleamine 2,3-di- oxygenase in a mouse model of neuroinflammation-induced depression. J Alzheimers Dis. 2012;28:905-915. https://doi.org/10.3233/JAD-2011-111097
  59. Yirmiya R, Pollak Y, Barak O, Avitsur R, Ovadia H, Bette M, Weihe E, Weidenfeld J. Effects of antidepressant drugs on the behavioral and physiological responses to lipopolysaccharide (LPS) in rodents. Neuropsychopharmacology. 2001;24:531-544.
  60. Wang Y, Cui XL, Liu YF, Gao F, Wei D, Li XW, Wang HN, Tan QR, Jiang W. LPS inhibits the effects of fluoxetine on depression-like behavior and hippocampal neurogenesis in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35:1831-1835. https://doi.org/10.1016/j.pnpbp.2011.07.004
  61. Maes M, Mihaylova I, Kubera M, Leunis JC. An IgM-mediated immune response directed against nitro-bovine serum albumin (nitro-BSA) in chronic fatigue syndrome (CFS) and major depression: evidence that nitrosative stress is another factor underpinning the comorbidity between major depression and CFS. Neuro Endocrinol Lett. 2008;29:313-319.
  62. Maes M, Kubera M, Leunis JC, Berk M. Increased IgA and IgM responses against gut commensals in chronic depression: Further evidence for increased bacterial translocation or leaky gut. J Affect Disord. 2012;141:55-62. https://doi.org/10.1016/j.jad.2012.02.023
  63. Jung KK, Lee HS, Cho JY, Shin WC, Rhee MH, Kim TG, Kang JH, Kim SH, Hong S, Kang SY. Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life Sci. 2006;79:2022-2031.
  64. Tocharus J, Jamsuwan S, Tocharus C, Changtam C, Suksamrarn A. Curcuminoid analogs inhibit nitric oxide production from LPS-activated microglial cells. J Nat Med. 2012;66:400-405. https://doi.org/10.1007/s11418-011-0599-6
  65. Karatepe O, Acet E, Battal M, Adas G, Kemik A, Altiok M, Kamali G, Koculu S, Catay A, Kamali S, Karahan S. Effects of glutamine and curcumin on bacterial translocation in jaundiced rats. World J Gastroenterol. 2010;16:4313-4320.
  66. Liu W, Zhai Y, Heng X, Che FY, Chen W, Sun D, Zhai G. Oral bioavailability of curcumin: problems and advancements. Journal of Drug Targeting. 2016;(8):694-702. https://doi.org/10.3109/1061186X.2016.1157883

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.