Сайт издательства «Медиа Сфера»
содержит материалы, предназначенные исключительно для работников здравоохранения. Закрывая это сообщение, Вы подтверждаете, что являетесь дипломированным медицинским работником или студентом медицинского образовательного учреждения.

Вахнина Н.В.

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)

Новиков Д.К.

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)

Вехова К.А.

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)

Жук А.М.

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)

Климанович Д.Л.

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)

Исайкин А.И.

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский университет)

Захаров В.В.

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)

Перспективы лечения болезни Альцгеймера

Авторы:

Вахнина Н.В., Новиков Д.К., Вехова К.А., Жук А.М., Климанович Д.Л., Исайкин А.И., Захаров В.В.

Подробнее об авторах

Прочитано: 1382 раза


Как цитировать:

Вахнина Н.В., Новиков Д.К., Вехова К.А., Жук А.М., Климанович Д.Л., Исайкин А.И., Захаров В.В. Перспективы лечения болезни Альцгеймера. Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2025;125(4‑2):54‑60.
Vakhnina NV, Novikov DK, Vekhova KA, Zhuk AM, Klimanovich DL, Isaikin AI, Zaharov VV. Prospects for treating Alzheimer’s disease. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;125(4‑2):54‑60. (In Russ.)
https://doi.org/10.17116/jnevro202512504254

Рекомендуем статьи по данной теме:
Ког­ни­тив­ные на­ру­ше­ния у па­ци­ен­тов с бо­лез­нью Пар­кин­со­на. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(11):81-90
Ког­ни­тив­ные на­ру­ше­ния у би­лин­гвис­тов при нев­ро­ло­ги­чес­ких за­бо­ле­ва­ни­ях. Жур­нал нев­ро­ло­гии и пси­хи­ат­рии им. С.С. Кор­са­ко­ва. 2024;(12):26-29
Эф­фек­тив­ность при­ме­не­ния пре­вен­тив­ных и пер­со­на­ли­зи­ро­ван­ных тех­но­ло­гий для кор­рек­ции ожи­ре­ния. Воп­ро­сы ку­рор­то­ло­гии, фи­зи­оте­ра­пии и ле­чеб­ной фи­зи­чес­кой куль­ту­ры. 2024;(6-2):80-90

Литература / References:

  1. Prince M, Bryce R, Albanese E, et al. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9(1):63-75.e2.  https://doi.org/10.1016/j.jalz.2012.11.007
  2. Paroni G, Bisceglia P, Seripa D. Understanding the Amyloid Hypothesis in Alzheimer’s Disease. J Alzheimers Dis. 2019;68(2):493-510.  https://doi.org/10.3233/JAD-180802
  3. Ferrari C, Sorbi S. The complexity of Alzheimer’s disease: an evolving puzzle. Physiol Rev. 2021;101(3):1047-1081. https://doi.org/10.1152/physrev.00015.2020
  4. Caspersen C, Wang N, Yao J, et al. Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J. 2005;19(14):2040-2041. https://doi.org/10.1096/fj.05-3735fje
  5. Combs CK, Colleen Karlo J, Kao SC, Landreth GE. beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci. 2001;21(4):1179-1188. https://doi.org/10.1523/JNEUROSCI.21-04-01179.2001
  6. Shearman MS, Ragan CI, Iversen LL. Inhibition of PC12 cell redox activity is a specific, early indicator of the mechanism of beta-amyloid-mediated cell death. Proc Natl Acad Sci U S A. 1994;91(4):1470-1474. https://doi.org/10.1073/pnas.91.4.1470
  7. Avila J, Lucas JJ, Pérez M, Hernández F. Role of tau protein in both physiological and pathological conditions. Physiol Rev. 2004;84(2):361-384.  https://doi.org/10.1152/physrev.00024.2003
  8. Breijyeh Z, Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules. 2020;25(24):5789. https://doi.org/10.3390/molecules25245789
  9. Götz J, Chen F, Van Dorpe J, Nitsch RM. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science. 2001;293(5534):1491-1495. https://doi.org/10.1126/science.1062097
  10. Ittner LM, Ke YD, Delerue F, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142(3):387-397.  https://doi.org/10.1016/j.cell.2010.06.036
  11. Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505-508.  https://doi.org/10.1001/jamaneurol.2013.5847
  12. Bai R, Guo J, Ye XY, et al. Oxidative stress: The core pathogenesis and mechanism of Alzheimer’s disease. Ageing Res Rev. 2022;77:101619. https://doi.org/10.1016/j.arr.2022.101619
  13. Saki G, Eidi A, Mortazavi P, et al. Effect of β-asarone in normal and β-amyloid-induced Alzheimeric rats. Arch Med Sci. 2020;16(3):699-706.  https://doi.org/10.5114/aoms.2020.94659
  14. Sochocka M, Donskow-Łysoniewska K, Diniz BS, et al. The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease-a Critical Review. Mol Neurobiol. 2019;56(3):1841-1851. https://doi.org/10.1007/s12035-018-1188-4
  15. Search for: Alzheimer Disease, Study completion from 10/12/2024 to 10/13/2080. List Results. ClinicalTrials.gov. Accessed October 13,2024. https://clinicaltrials.gov/search?cond=Alzheimer%20Disease&studyComp=2024-10-12_2080-10-13
  16. Yu TW, Lane HY, Lin CH. Novel Therapeutic Approaches for Alzheimer’s Disease: An Updated Review. Int J Mol Sci. 2021;22(15):8208. https://doi.org/10.3390/ijms22158208
  17. Singh B, Day CM, Abdella S, Garg S. Alzheimer’s disease current therapies, novel drug delivery systems and future directions for better disease management. J Control Release. 2024;367:402-424.  https://doi.org/10.1016/j.jconrel.2024.01.047
  18. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8(6):595-608.  https://doi.org/10.15252/emmm.201606210
  19. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256(5054):184-185.  https://doi.org/10.1126/science.1566067
  20. Wang J, Jin C, Zhou J, et al. PET molecular imaging for pathophysiological visualization in Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2023;50(3):765-783.  https://doi.org/10.1007/s00259-022-05999-z
  21. Valotassiou V, Malamitsi J, Papatriantafyllou J, et al. SPECT and PET imaging in Alzheimer’s disease. Ann Nucl Med. 2018;32(9):583-593.  https://doi.org/10.1007/s12149-018-1292-6
  22. Wilcock DM, Rojiani A, Rosenthal A, et al. Passive amyloid immunotherapy clears amyloid and transiently activates microglia in a transgenic mouse model of amyloid deposition. J Neurosci. 2004;24(27):6144-6151. https://doi.org/10.1523/JNEUROSCI.1090-04.2004
  23. Lemere CA, Spooner ET, Leverone JF, et al. Amyloid-beta immunization in Alzheimer’s disease transgenic mouse models and wildtype mice. Neurochem Res. 2003;28(7):1017-1027. https://doi.org/10.1023/a:1023203122036
  24. Salloway S, Sperling R, Fox NC, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N Engl J Med. 2014;370(4):322-333.  https://doi.org/10.1056/NEJMoa1304839
  25. Honig LS, Vellas B, Woodward M, et al. Trial of Solanezumab for Mild Dementia Due to Alzheimer’s Disease. N Engl J Med. 2018;378(4):321-330.  https://doi.org/10.1056/NEJMoa1705971
  26. Lendel C, Bjerring M, Dubnovitsky A, et al. A hexameric peptide barrel as building block of amyloid-β protofibrils. Angew Chem Int Ed Engl. 2014;53(47):12756-12760. https://doi.org/10.1002/anie.201406357
  27. Lilly Provides Update on A4 Study of Solanezumab for Preclinical Alzheimer’s Disease. Accessed November 29, 2024. https://www.prnewswire.com/news-releases/lilly-provides-update-on-a4-study-of-solanezumab-for-preclinical-alzheimers-disease-301766069.html
  28. Ad hoc announcement pursuant to Art. 53 LR Roche provides update on Phase III GRADUATE programme evaluating gantenerumab in early Alzheimer’s disease. Accessed November 29, 2024. https://www.roche.com/media/releases/med-cor-2022-11-14
  29. Reiman EM, Pruzin JJ, Rios-Romenets S, et al. A Public Resource of Baseline Data from the Alzheimer’s Prevention Initiative Autosomal Dominant Alzheimer’s Disease Trial. Alzheimers Dement. 2022;19(5):1938. https://doi.org/10.1002/alz.12843
  30. Murayama MA. The past and present of therapeutic strategy for Alzheimer’s diseases: potential for stem cell therapy. Exp Anim. 2023;72(3):285.  https://doi.org/10.1538/expanim.22-0164
  31. FDA approves treatment for adults with Alzheimer’s disease. FDA. Accessed October 23,2024. https://www.fda.gov/drugs/news-events-human-drugs/fda-approves-treatment-adults-alzheimers-disease
  32. Arndt JW, Qian F, Smith BA, et al. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci Rep. 2018;8(1):6412. https://doi.org/10.1038/s41598-018-24501-0
  33. Budd Haeberlein S, Aisen PS, Barkhof F, et al. Two Randomized Phase 3 Studies of Aducanumab in Early Alzheimer’s Disease. J Prev Alzheimers Dis. 2022;9(2):197-210.  https://doi.org/10.14283/jpad.2022.30
  34. Beshir SA, Aadithsoorya AM, Parveen A, et al. Aducanumab Therapy to Treat Alzheimer’s Disease: A Narrative Review. Int J Alzheimers Dis. 2022;2022:9343514. https://doi.org/10.1155/2022/9343514
  35. Tucker S, Möller C, Tegerstedt K, et al. The murine version of BAN2401 (mAb158) selectively reduces amyloid-β protofibrils in brain and cerebrospinal fluid of tg-ArcSwe mice. J Alzheimers Dis. 2015;43(2):575-588.  https://doi.org/10.3233/JAD-140741
  36. van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in Early Alzheimer’s Disease. N Engl J Med. 2023;388(1):9-21.  https://doi.org/10.1056/NEJMoa2212948
  37. Trontinemab. ALZFORUM. Accessed November 29, 2024. https://www.alzforum.org/therapeutics/trontinemab
  38. Study Details. A Study of Donanemab (LY3002813) in Participants With Early Alzheimer’s Disease (TRAILBLAZER-ALZ 2). ClinicalTrials.gov. Accessed December 13, 2024. https://clinicaltrials.gov/study/NCT04437511?cond=NCT04437511&rank=1
  39. Siemers E, Hitchcock J, Sundell K, et al. ACU193, a Monoclonal Antibody that Selectively Binds Soluble Aß Oligomers: Development Rationale, Phase 1 Trial Design, and Clinical Development Plan. J Prev Alzheimers Dis. 2023;10(1):19-24.  https://doi.org/10.14283/jpad.2022.93
  40. Yadollahikhales G, Rojas JC. Anti-Amyloid Immunotherapies for Alzheimer’s Disease: A 2023 Clinical Update. Neurotherapeutics. 2023;20(4):914-931.  https://doi.org/10.1007/s13311-023-01405-0
  41. Mintun MA, Lo AC, Duggan Evans C, et al. Donanemab in Early Alzheimer’s Disease. N Engl J Med. 2021;384(18):1691-1704. https://doi.org/10.1056/NEJMoa2100708
  42. Shcherbinin S, Andersen SW, Evans CD, et al. TRAILBLAZER‐ALZ Study: Dynamics of amyloid reduction after donanemab treatment. Alzheimer Dem. 2021;17(Suppl. 9):e057492:23-29.  https://doi.org/10.1002/ALZ.057492
  43. Salloway DS, Lee DE, Papka DM, et al. TRAILBLAZER-ALZ 4: Topline Study Results Directly Comparing Donanemab to Aducanumab on Amyloid Lowering in Early, Symptomatic Alzheimer’s Disease. BJPsych Open. 2023;9(Suppl 1):S67.  https://doi.org/10.1192/BJO.2023.227
  44. Khan T, Waseem R, Shahid M, et al. Recent advancement in therapeutic strategies for Alzheimer’s disease: Insights from clinical trials. Ageing Res Rev. 2023;92:102113. https://doi.org/10.1016/j.arr.2023.102113
  45. Zhang C, Wang Y, Wang D, et al. NSAID Exposure and Risk of Alzheimer’s Disease: An Updated Meta-Analysis From Cohort Studies. Front Aging Neurosci. 2018;10:83.  https://doi.org/10.3389/fnagi.2018.00083
  46. Lehrer S, Rheinstein PH. Nasal Steroids as a Possible Treatment for Alzheimer’s Disease. Discov Med. 2017;24(132):147-152. 
  47. Romanella SM, Roe D, Paciorek R, et al. Sleep, Noninvasive Brain Stimulation, and the Aging Brain: Challenges and Opportunities. Ageing Res Rev. 2020;61:101067. https://doi.org/10.1016/j.arr.2020.101067
  48. Jung YH, Jang H, Park S, et al. Effectiveness of Personalized Hippocampal Network-Targeted Stimulation in Alzheimer Disease: A Randomized Clinical Trial. JAMA Netw Open. 2024;7(7):e2426187. https://doi.org/10.1001/jamanetworkopen.2024.9220
  49. Sprugnoli G, Munsch F, Cappon D, et al. Impact of multisession 40Hz tACS on hippocampal perfusion in patients with Alzheimer’s disease. Alzheimers Res Ther. 2021;13(1):203.  https://doi.org/10.1186/s13195-021-00922-4
  50. Bréchet L, Yu W, Biagi MC, et al. Patient-Tailored, Home-Based Non-invasive Brain Stimulation for Memory Deficits in Dementia Due to Alzheimer’s Disease. Front Neurol. 2021;12:598135. https://doi.org/10.3389/fneur.2021.598135
  51. Wu L, Zhang W, Li S, et al. Transcranial Alternating Current Stimulation Improves Memory Function in Alzheimer’s Mice by Ameliorating Abnormal Gamma Oscillation. IEEE Trans Neural Syst Rehabil Eng. 2023;31:2060-2068. https://doi.org/10.1109/TNSRE.2023.3265378
  52. Benussi A, Cantoni V, Grassi M, et al. Increasing Brain Gamma Activity Improves Episodic Memory and Restores Cholinergic Dysfunction in Alzheimer’s Disease. Ann Neurol. 2022;92(2):322-334.  https://doi.org/10.1002/ana.26411
  53. Lin Y, Jin J, Lv R, et al. Repetitive transcranial magnetic stimulation increases the brain’s drainage efficiency in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun. 2021;9(1):102.  https://doi.org/10.1186/s40478-021-01198-3

Подтверждение e-mail

На test@yandex.ru отправлено письмо со ссылкой для подтверждения e-mail. Перейдите по ссылке из письма, чтобы завершить регистрацию на сайте.

Подтверждение e-mail

Мы используем файлы cооkies для улучшения работы сайта. Оставаясь на нашем сайте, вы соглашаетесь с условиями использования файлов cооkies. Чтобы ознакомиться с нашими Положениями о конфиденциальности и об использовании файлов cookie, нажмите здесь.