The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Ukraintseva Yu.V.

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science;
Institute of Biomedical Problems of the Russian Academy of Science

Liaukovich K.M.

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, Russian Federation

Shilov M.O.

Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Science, Russian Federation

Time as a dimension of consciousness. Subjective passage of time during wakefulness, REM, and NREM sleep

Authors:

Ukraintseva Yu.V., Liaukovich K.M., Shilov M.O.

More about the authors

Read: 2558 times


To cite this article:

Ukraintseva YuV, Liaukovich KM, Shilov MO. Time as a dimension of consciousness. Subjective passage of time during wakefulness, REM, and NREM sleep. S.S. Korsakov Journal of Neurology and Psychiatry. 2020;120(9‑2):13‑21. (In Russ.)
https://doi.org/10.17116/jnevro202012009213

Recommended articles:
Stress and sleep: Neurobiological aspe­cts and modern options of inso­mnia therapy. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(5-2):14-21
Factors of depression acco­rding to acti­graphy in the fall season. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(5-2):27-32
Inso­mnia in children. S.S. Korsakov Journal of Neurology and Psychiatry. 2025;(5-2):46-51
Dysfunctional pelvic pain in women. Russian Journal of Pain. 2025;(2):32-37

References:

  1. Block RA, Hancock PA, Zakay D. How cognitive load affects duration judgments: A meta-analytic review. Acta Psychol (Amst). 2010;134(3):330-343.  https://doi.org/10.1016/j.actpsy.2010.03.006
  2. Zakay D, Block RA. Temporal Cognition. Curr Dir Psychol Sci. 1997;6(1):12-16.  https://doi.org/10.1111/1467-8721.ep11512604
  3. Cai ZG, Wang R. Numerical Magnitude Affects Temporal Memories but Not Time Encoding. PLoS One. 2014;9(1):e83159. https://doi.org/10.1371/journal.pone.0083159
  4. Chang AYC, Tzeng OJL, Hung DL, Wu DH. Big Time Is Not Always Long. Psychol Sci. 2011;22(12):1567-1573. https://doi.org/10.1177/0956797611418837
  5. Wearden JH, Edwards H, Fakhri M, Percival A. Why «sounds are judged longer than lights»: application of a model of the internal clock in humans. Q J Exp Psychol B. 1998;51(2):97-120.  https://doi.org/10.1080/713932672
  6. Sviderskaya NE. In Search of Neurophysiological Criteria for Altered States of Consciousness. Zhurnal vysshej nervnoj deyatel’nosti im. I.P. Pavlova. 2002;52(5):517-530. (In Russ.).
  7. Lake JI, LaBar KS, Meck WH. Emotional modulation of interval timing and time perception. Neurosci Biobehav Rev. 2016;64:403-420.  https://doi.org/10.1016/j.neubiorev.2016.03.003
  8. Danilin VP, Latash LP. The Subjective Estimation of the Duration of Sleep Periods: the Value of Real Time and Representation of Different EEG-Stages. Zhurnal vysshej nervnoj deyatel’nosti im. I.P. Pavlova. 1979;29(3):502-509. (In Russ.).
  9. Fichten CS, Creti L, Amsel R, Bailes S, Libman E. Time Estimation in Good and Poor Sleepers. J Behav Med. 2005;28(6):537-553.  https://doi.org/10.1007/s10865-005-9021-8
  10. Reddy P, Zehring WA, Wheeler DA, Pirrotta V, Hadfield C, Hall JC, Rosbash M. Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell. 1984;38(3):701-710.  https://doi.org/10.1016/0092-8674(84)90265-4
  11. Colwell CS. Linking neural activity and molecular oscillations in the SCN. Nat Rev Neurosci. 2011;12(10):553-569.  https://doi.org/10.1038/nrn3086
  12. Lewis PA, Miall RC, Daan S, Kacelnik A. Interval timing in mice does not rely upon the circadian pacemaker. Neurosci Lett. 2003;348(3):131-134.  https://doi.org/10.1016/S0304-3940(03)00521-4
  13. Gibbon J, Church RM, Meck WH. Scalar Timing in Memory. Ann NY Acad Sci. 1984;423(1 Timing and Ti):52-77.  https://doi.org/10.1111/j.1749-6632.1984.tb23417.x
  14. Treisman M. Temporal discrimination and the indifference interval: Implications for a model of the «internal clock». Psychol Monogr Gen Appl. 1963;77(13):1-31.  https://doi.org/10.1037/h0093864
  15. Fraisse P. Perception and Estimation of Time. Annu Rev Psychol. 1984;35(1):1-36.  https://doi.org/10.1146/annurev.psych.35.1.1
  16. van Wassenhove V. Minding time in an amodal representational space. Philos Trans R Soc B Biol Sci. 2009;364(1525):1815-1830. https://doi.org/10.1098/rstb.2009.0023
  17. Buonomano DV, Maass W. State-dependent computations: spatiotemporal processing in cortical networks. Nat Rev Neurosci. 2009;10(2):113-125.  https://doi.org/10.1038/nrn2558
  18. Eagleman DM, Pariyadath V. Is subjective duration a signature of coding efficiency? Philos Trans R Soc B Biol Sci. 2009;364(1525):1841-1851. https://doi.org/10.1098/rstb.2009.0026
  19. Buckhout R, Fox P, Rabinowitz M. Estimating the duration of an earthquake: Some shaky field observations. Bull Psychon Soc. 1989;27(4):375-378.  https://doi.org/10.3758/BF03334633
  20. Buckley R. Slow time perception can be learned. Front Psychol. 2014;5:209.  https://doi.org/10.3389/fpsyg.2014.00209
  21. Campbell LA, Bryant RA. How time flies: A study of novice skydivers. Behav Res Ther. 2007;45(6):1389-1392. https://doi.org/10.1016/j.brat.2006.05.011
  22. Stetson C, Fiesta MP, Eagleman DM. Does Time Really Slow Down during a Frightening Event? PLoS One. 2007;2(12):e1295. https://doi.org/10.1371/journal.pone.0001295
  23. Arstila V. Time Slows Down during Accidents. Front Psychol. 2012;3:196.  https://doi.org/10.3389/fpsyg.2012.00196
  24. Cahill L, McGaugh JL. Modulation of memory storage. Curr Opin Neurobiol. 1996;6(2):237-242.  https://doi.org/10.1016/S0959-4388(96)80078-X
  25. Schacter DL. Illusory memories: A cognitive neuroscience analysis. Proc Natl Acad Sci. 1996;93(24):13527-13533. https://doi.org/10.1073/pnas.93.24.13527
  26. Matthews WJ, Meck WH. Temporal cognition: Connecting subjective time to perception, attention, and memory. Psychol Bull. 2016;142(8):865-907.  https://doi.org/10.1037/bul0000045
  27. James W. The Perception of Time. In: The Principles of Psychology. New York: Henry Holt and Company; 1890.
  28. Hammond C. Unlocking the Mysteries of Time Perception. New York: HarperPerennial; 2013.
  29. O’Keefe J, Nadel L. The Hippocampus as a Cognitive Map. Oxford: Oxford University Press; 1978.
  30. MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H. Hippocampal «Time Cells» Bridge the Gap in Memory for Discontiguous Events. Neuron. 2011;71(4):737-749.  https://doi.org/10.1016/j.neuron.2011.07.012
  31. Kraus BJ, Robinson RJ, White JA, Eichenbaum H, Hasselmo ME. Hippocampal «Time Cells»: Time versus Path Integration. Neuron. 2013;78(6):1090-1101. https://doi.org/10.1016/j.neuron.2013.04.015
  32. Eichenbaum H. Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci. 2014;15(11):732-744.  https://doi.org/10.1038/nrn3827
  33. Howard MW, Eichenbaum H. The hippocampus, time, and memory across scales. J Exp Psychol Gen. 2013;142(4):1211-1230. https://doi.org/10.1037/a0033621
  34. Mehta MR, Quirk MC, Wilson MA. Experience-Dependent Asymmetric Shape of Hippocampal Receptive Fields. Neuron. 2000;25(3):707-715.  https://doi.org/10.1016/S0896-6273(00)81072-7
  35. Cheng J, Ji D. Rigid firing sequences undermine spatial memory codes in a neurodegenerative mouse model. Elife. 2013;2:e00647. https://doi.org/10.7554/eLife.00647
  36. Wallenstein GV, Hasselmo ME, Eichenbaum H. The hippocampus as an associator of discontiguous events. Trends Neurosci. 1998;21(8):317-323.  https://doi.org/10.1016/S0166-2236(97)01220-4
  37. Lloyd D. Neural correlates of temporality: Default mode variability and temporal awareness. Conscious Cogn. 2012;21(2):695-703.  https://doi.org/10.1016/j.concog.2011.02.016
  38. Seth A. Explanatory Correlates of Consciousness: Theoretical and Computational Challenges. Cognit Comput. 2009;1(1):50-63.  https://doi.org/10.1007/s12559-009-9007-x
  39. Husserl E. Zur Phänomenologie Des Inneren Zeitbewusstseins (1893—1917). Ed. Boehm R. Dordrecht: Springer Netherlands; 1969.
  40. Friston K. A theory of cortical responses. Philos Trans R Soc B Biol Sci. 2005;360(1456):815-836.  https://doi.org/10.1098/rstb.2005.1622
  41. Atienza M, Cantero JL, Dominguez-Marin E. Mismatch negativity (MMN): an objective measure of sensory memory and long-lasting memories during sleep. Int J Psychophysiol. 2002;46(3):215-225.  https://doi.org/10.1016/S0167-8760(02)00113-7
  42. Abbott LF, Nelson SB. Synaptic plasticity: taming the beast. Nat Neurosci. 2000;3(S11):1178-1183. https://doi.org/10.1038/81453
  43. Davies PCW. About Time: Einschtein’s Unfinished Revolution. New York: Simon & Schuster; 1996.
  44. Weyl H. Philosophy of Mathematics and Natural Science. Princeton: Princeton University Press; 2009.
  45. McKinnon N. Presentism and consciousness. Australas J Philos. 2003;81(3):305-323.  https://doi.org/10.1093/ajp/jag301
  46. Atal BS, Hanauer SL. Speech Analysis and Synthesis by Linear Prediction of the Speech Wave. J Acoust Soc Am. 1971;50(2B):637-655.  https://doi.org/10.1121/1.1912679
  47. Denham SL, Winkler I. Predictive coding in auditory perception: challenges and unresolved questions. Eur J Neurosci. 2017;December:1-10.  https://doi.org/10.1111/ejn.13802
  48. Brunswik E. Perception and the Representative Design of Psychological Experiments. 2nd ed. Berkeley: University of California Press; 1956.
  49. Jääskeläinen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levänen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen H, Belliveau JW. Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci. 2004;101(17):6809-6814. https://doi.org/10.1073/pnas.0303760101
  50. May P, Tiitinen H, Ilmoniemi RJ, Nyman G, Taylor JG, Näätänen R. Frequency change detection in human auditory cortex. J Comput Neurosci. 1999;6(2):99-120.  https://doi.org/10.1023/a:1008896417606
  51. Polich J. Updating P300: An integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128-2148. https://doi.org/10.1016/j.clinph.2007.04.019
  52. Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: A review. Clin Neurophysiol. 2007;118(12):2544-2590. https://doi.org/10.1016/j.clinph.2007.04.026
  53. Winkler I, Czigler I. Mismatch negativity. Neuroreport. 1998;9(17):3809-3813. https://doi.org/10.1097/00001756-199812010-00008
  54. Ulanovsky N, Las L, Nelken I. Processing of low-probability sounds by cortical neurons. Nat Neurosci. 2003;6(4):391-398.  https://doi.org/10.1038/nn1032
  55. King JR, Faugeras F, Gramfort A, Schurger A, El Karoui I, Sitt JD, Rohaut B, Wacongne C, Labyt E, Bekinschtein T, Cohen L, Naccache L, Dehaene S. Single-trial decoding of auditory novelty responses facilitates the detection of residual consciousness. Neuroimage. 2013;83:726-738.  https://doi.org/10.1016/j.neuroimage.2013.07.013
  56. Morlet D, Fischer C. MMN and Novelty P3 in Coma and Other Altered States of Consciousness: A Review. Brain Topogr. 2014;27(4):467-479.  https://doi.org/10.1007/s10548-013-0335-5
  57. Johnson R, Pfefferbaum A, Kopell BS. P300 and Long-Term Memory: Latency Predicts Recognition Performance. Psychophysiology. 1985;22(5):497-507.  https://doi.org/10.1111/j.1469-8986.1985.tb01639.x
  58. Maurer K, Riederer P, Heinsen H, Beckmann H. Altered P300 topography due to functional and structural disturbances in the limbic system in dementia and psychoses and to pharmacological conditions. Psychiatry Res. 1989;29(3):391-393.  https://doi.org/10.1016/0165-1781(89)90099-1
  59. Ozen LJ, Itier RJ, Preston FF, Fernandes MA. Long-term working memory deficits after concussion: Electrophysiological evidence. Brain Inj. 2013;27(11):1244-1255. https://doi.org/10.3109/02699052.2013.804207
  60. Voronkova YA, Lebedeva IS, Gubsky LV, Orlova VA, Voskresenskaia NI, Kupriianov DA, Anisimov NV, Solokhina TA. Subcortical and limbic structures and P300 in schizophrenia. Hum Physiol. 2005;31(2):137-141.  https://doi.org/10.1007/s10747-005-0022-3
  61. Del Cul A, Baillet S, Dehaene S. Brain Dynamics Underlying the Nonlinear Threshold for Access to Consciousness. PLoS Biol. 2007;5(10):e260. https://doi.org/10.1371/journal.pbio.0050260
  62. Kranczioch C, Debener S, Maye A, Engel AK. Temporal dynamics of access to consciousness in the attentional blink. Neuroimage. 2007;37(3):947-955.  https://doi.org/10.1016/j.neuroimage.2007.05.044
  63. Ernst B, Reichard SM, Riepl RF, Steinhauser R, Zimmermann SF, Steinhauser M. The P3 and the subjective experience of time. Neuropsychologia. 2017;103:12-19.  https://doi.org/10.1016/j.neuropsychologia.2017.06.033
  64. Aston-Jones G, Rajkowski J, Kubiak P, Alexinsky T. Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J Neurosci. 1994;14(7):4467-4480. https://doi.org/10.1523/JNEUROSCI.14-07-04467.1994
  65. Puglisi-Allegra S, Ventura R. Prefrontal/accumbal catecholamine system processes high motivational salience. Front Behav Neurosci. 2012;6:3.  https://doi.org/10.3389/fnbeh.2012.00031
  66. Buonomano DV. Decoding Temporal Information: A Model Based on Short-Term Synaptic Plasticity. J Neurosci. 2000;20(3):1129-1141. https://doi.org/10.1523/JNEUROSCI.20-03-01129.2000
  67. Zucker RS. Short-Term Synaptic Plasticity. Annu Rev Neurosci. 1989;12(1):13-31.  https://doi.org/10.1146/annurev.ne.12.030189.000305
  68. Zucker RS, Regehr WG. Short-Term Synaptic Plasticity. Annu Rev Physiol. 2002;64(1):355-405.  https://doi.org/10.1146/annurev.physiol.64.092501.114547
  69. Antrobus J. REM and NREM Sleep Reports: Comparison of Word Frequencies by Cognitive Classes. Psychophysiology. 1983;20(5):562-568.  https://doi.org/10.1111/j.1469-8986.1983.tb03015.x
  70. Cipolli C, Ferrara M, De Gennaro L, Plazzi G. Beyond the neuropsychology of dreaming: Insights into the neural basis of dreaming with new techniques of sleep recording and analysis. Sleep Med Rev. 2017;35:8-20.  https://doi.org/10.1016/j.smrv.2016.07.005
  71. Hobson JA, Pace-Schott EF, Stickgold R. Dreaming and the brain: Toward a cognitive neuroscience of conscious states. Behav Brain Sci. 2000;23(6):793-842.  https://doi.org/10.1017/S0140525X00003976
  72. Freud S. The Interpretation of Dreams. Ed. Strachey J. New York: Basic Books A Member of the Perseus Books Group; 2010.
  73. Nunberg H, Federn E. Minutes of the Vienna Psychoanalytic, Vol. 3:1910-1911. New York: International Universities Press, Inc.; 1974.
  74. Ikeda H, Hayashi. Longitudinal study of self-awakening and sleep/wake habits in adolescents. Nat Sci Sleep. 2012;4:103.  https://doi.org/10.2147/NSS.S33861
  75. Lavie P. Ultradian rhythms in alertness — A pupillometric study. Biol Psychol. 1979;9(1):49-62.  https://doi.org/10.1016/0301-0511(79)90022-X
  76. Zepelin H. Self-awakening and the sleep cycle. Psychophysiology. 1968;4(3):370. 
  77. Edeline J-M, Manunta Y, Hennevin E. Auditory Thalamus Neurons During Sleep: Changes in Frequency Selectivity, Threshold, and Receptive Field Size. J Neurophysiol. 2000;84(2):934-952.  https://doi.org/10.1152/jn.2000.84.2.934
  78. Sabri M, Campbell KB. The effects of digital filtering on mismatch negativity in wakefulness and slow-wave sleep. J Sleep Res. 2002;11(2):123-127.  https://doi.org/10.1046/j.1365-2869.2002.00292.x
  79. Andrillon T, Kouider S. Implicit memory for words heard during sleep. Neurosci Conscious. 2016;2016(1):niw014. https://doi.org/10.1093/nc/niw014
  80. Arzi A, Shedlesky L, Ben-Shaul M, Nasser K, Oksenberg A, Hairston IS, Sobel N. Humans can learn new information during sleep. Nat Neurosci. 2012;15(10):1460-1465. https://doi.org/10.1038/nn.3193
  81. Simon CW, Emmons WH. Responses to material presented during various levels of sleep. J Exp Psychol. 1956;51(2):89-97.  https://doi.org/10.1037/h0043637
  82. Wood JM, Bootzin RR, Kihlstrom JF, Schacter DL. Implicit and Explicit Memory for Verbal Information Presented during Sleep. Psychol Sci. 1992;3(4):236-240.  https://doi.org/10.1111/j.1467-9280.1992.tb00035.x
  83. Vasil’eva VM, Slavutskaya MV. Conditioned Reflex to Time in Various Stages of Night Sleep in Humans. Zhurnal vysshej nervnoj deyatel’nosti im. I.P. Pavlova. 1974;24(1):6-15. (In Russ.).
  84. Borkovec TD, Lane TW, VanOot PH. Phenomenology of sleep among insomniacs and good sleepers: Wakefulness experience when cortically asleep. J Abnorm Psychol. 1981;90(6):607-609.  https://doi.org/10.1037/0021-843X.90.6.607
  85. Aritake-Okada S, Higuchi S, Suzuki H, Kuriyama K, Enomoto M, Soshi T, Kitamura S, Watanabe M, Hida A, Matsuura M, Uchiyama M, Mishima K. Diurnal fluctuations in subjective sleep time in humans. Neurosci Res. 2010;68(3):225-231.  https://doi.org/10.1016/j.neures.2010.07.2040
  86. Aritake S, Uchiyama M, Tagaya H, Suzuki H, Kuriyama K, Ozaki A, Tan X, Shibui K, Kamei Y, Okubo Y, Takahashi K. Time estimation during nocturnal sleep in human subjects. Neurosci Res. 2004;49(4):387-393.  https://doi.org/10.1016/j.neures.2004.04.006
  87. Hauri P, Olmstead E. What Is the Moment of Sleep Onset for Insomniacs? Sleep. 1983;6(1):10-15.  https://doi.org/10.1093/sleep/6.1.10
  88. Danilin VP, Latash LP. Subjective Estimation of the Duration and Periods in Night Sleep during Awakening from Different Stages, Phases, and Cycles. Doklady AN CCCP. 1972;204(3):748-751. (In Russ.).
  89. Latash LP, Danilin VP. Subjective Estimation of the Duration of Time Periods in Night Sleep. Nat New Biol. 1972;236(64):94-95.  https://doi.org/10.1038/newbio236094a0
  90. de Vivo L, Bellesi M, Marshall W, Bushong EA, Ellisman MH, Tononi G, Cirelli C. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science. 2017;355(6324):507-510.  https://doi.org/10.1126/science.aah5982
  91. Diering GH, Nirujogi RS, Roth RH, Worley PF, Pandey A, Huganir RL. Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science. 2017;355(6324):511-515.  https://doi.org/10.1126/science.aai8355
  92. Tononi G, Cirelli C. Sleep function and synaptic homeostasis. Sleep Med Rev. 2006;10(1):49-62.  https://doi.org/10.1016/j.smrv.2005.05.002
  93. Miyawaki H, Diba K. Regulation of Hippocampal Firing by Network Oscillations during Sleep. Curr Biol. 2016;26(7):893-902.  https://doi.org/10.1016/j.cub.2016.02.024
  94. Grosmark AD, Mizuseki K, Pastalkova E, Diba K, Buzsáki G. REM Sleep Reorganizes Hippocampal Excitability. Neuron. 2012;75(6):1001-1007. https://doi.org/10.1016/j.neuron.2012.08.015
  95. Langella M, Colarieti L, Ambrosini M, Giuditta A. The sequential hypothesis of sleep function. IV. A correlative analysis of sleep variables in learning and nonlearning rats. Physiol Behav. 1992;51(2):227-238.  https://doi.org/10.1016/0031-9384(92)90135-O
  96. Trotti LM. Waking up is the hardest thing I do all day: Sleep inertia and sleep drunkenness. Sleep Med Rev. 2017;35:76-84.  https://doi.org/10.1016/j.smrv.2016.08.005
  97. Aritake-Okada S, Uchiyama M, Suzuki H, Tagaya H, Kuriyama K, Matsuura M, Takahashi K, Higuchi S, Mishima K. Time estimation during sleep relates to the amount of slow wave sleep in humans. Neurosci Res. 2009;63(2):115-121.  https://doi.org/10.1016/j.neures.2008.11.001
  98. Wittmann M. The inner sense of time: how the brain creates a representation of duration. Nat Rev Neurosci. 2013;14(3):217-223.  https://doi.org/10.1038/nrn3452
  99. Moorcroft WH, Kayser KH, Griggs AJ. Subjective and Objective Confirmation of the Ability to Self-Awaken at a Self-Predetermined Time Without Using External Means. Sleep. 1997;20(1):40-45.  https://doi.org/10.1093/sleep/20.1.40

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.