The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Lutokhin G.M.

Moscow scientific and practical center of medical rehabilitation, restorative and sports medicine of the department of health of the city of Moscow

Kashezhev A.G.

Moscow scientific and practical center of medical rehabilitation, restorative and sports medicine of the department of health of the city of Moscow

Rassulova M.A.

Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine

Pogonchenkova I.V.

Moscow Centre for Research and Practice in Medical Rehabilitation, Restorative and Sports Medicine

Turova E.A.

Moscow center for research and practice in medical, rehabilitation, restorative and sports medicine

Shulkina A.V.

Moscow scientific and practical center of medical rehabilitation, restorative and sports medicine of the department of health of the city of Moscow

Samokhvalov R.I.

Moscow scientific and practical center of medical rehabilitation, restorative and sports medicine of the department of health of the city of Moscow

Implementation of robotic mechanotherapy for movement recovery in patients after stroke

Authors:

Lutokhin G.M., Kashezhev A.G., Rassulova M.A., Pogonchenkova I.V., Turova E.A., Shulkina A.V., Samokhvalov R.I.

More about the authors

Read: 3758 times


To cite this article:

Lutokhin GM, Kashezhev AG, Rassulova MA, Pogonchenkova IV, Turova EA, Shulkina AV, Samokhvalov RI. Implementation of robotic mechanotherapy for movement recovery in patients after stroke. Problems of Balneology, Physiotherapy and Exercise Therapy. 2022;99(5):60‑67. (In Russ.)
https://doi.org/10.17116/kurort20229905160

Recommended articles:
Differentiated approach to cognitive reha­bilitation of patients after stroke. Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(6):5-11
Stroke: current state of the problem. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(11):7-18
Cognitive impairment in bili­nguals with neurological diseases. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12):26-29
Connectome in stroke patients. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;(12-2):46-50
Fibrin mono­mer in diagnosis of cardiovascular diseases. Russian Cardiology Bulletin. 2024;(4-2):113-120

References:

  1. Di Carlo A. Human and economic burden of stroke. Age Ageing. 2009;38(1):4-5.  https://doi.org/10.1093/ageing/afn282
  2. Piradov MA, Maksimova MYu, Tanyashan MM. Insul’t, poshagovaya instrukciya. M.: GEOTAR-Media; 2020. (In Russ.).
  3. Díaz I, Gil JJ, Sánchez E. Lower-Limb Robotic Rehabilitation: Literature Review and Challenges. Journal of Robotics. 2011;1:11.  https://doi.org/10.1155/2011/759764
  4. Benjamin EJ, Virani SS, Callaway CW, et al. American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart Disease and Stroke Statistics-2018 Update: AReport From the American Heart Association. Circulation. 2018;137:67-492.  https://doi.org/10.1161/CIR.0000000000000558
  5. Eiammanussakul T, Sangveraphunsiri V. A Lower Limb Rehabilitation Robot in Sitting Position with a Review of Training Activities. J Healthc Eng. 2018;2018:1927807. https://doi.org/10.1155/2018/1927807
  6. Calabrò RS, Cacciola A, Bertè F, et al. Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Robotic gait rehabilitation and substitution devices in neurological disorders: where are we now? Neurol Sci. 2016;37(4):503-514.  https://doi.org/10.1007/s10072-016-2474-4
  7. Hobbs B, Artemiadis P. A Review of Robot-Assisted Lower-Limb Stroke Therapy: Unexplored Paths and Future Directions in Gait Rehabilitation. Front Neurorobot. 2020;14:19.  https://doi.org/10.3389/fnbot.2020.00019
  8. Zhang J, Dong Y, Yang C, et al. 5-Link model based gait trajectory adaption control strategies of the gait rehabilitation exoskeleton for post-stroke patients. Mechatronics. 2010;20:368-376.  https://doi.org/10.1016/j.mechatronics.2010.02.003
  9. Maranesi E, Riccardi GR, Di Donna V, et al. Effectiveness of Intervention Based on End-effector Gait Trainer in Older Patients With Stroke: A Systematic Review. J Am Med Dir Assoc. 2020;21(8):1036-1044. https://doi.org/10.1016/j.jamda.2019.10.010
  10. Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D. Gait training with the newly developed ‘LokoHelp’-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj. 2008;22(7-8):625-632.  https://doi.org/10.1080/02699050801941771
  11. Hidayah R, Bishop L, Jin X, et al. Gait Adaptation Using a Cable-Driven Active Leg Exoskeleton (C-ALEX) With Post-Stroke Participants. IEEE Trans Neural Syst Rehabil Eng. 2020;28(9):1984-1993. https://doi.org/10.1109/TNSRE.2020.3009317
  12. Arnez-Paniagua V, Rifai H, Amirat Y, Mohammed S. Adaptive control of an actuated-ankle-foot-orthosis. IEEE Int Conf Rehabil Robot. 2017;2017:1584-1589. https://doi.org/10.1109/ICORR.2017.8009474
  13. Yatsuya K, Hirano S, Saitoh E, et al. Comparison of energy efficiency between Wearable Power-Assist Locomotor (WPAL) and two types of knee-ankle-foot orthoses with a medial single hip joint (MSH-KAFO). J Spinal Cord Med. 2018;41(1):48-54.  https://doi.org/10.1080/10790268.2016.1226701
  14. Zhang X, Yue Z, Wang J. Robotics in Lower-Limb Rehabilitation after Stroke. Behav Neurol. 2017;2017:3731802. https://doi.org/10.1155/2017/3731802
  15. Bruni MF, Melegari C, De Cola MC, et al. What does best evidence tell us about robotic gait rehabilitation in stroke patients: A systematic review and meta-analysis. J Clin Neurosci. 2018;48:11-17.  https://doi.org/10.1016/j.jocn.2017.10.048
  16. Schwartz I, Meiner Z. Robotic-assisted gait training in neurological patients: who may benefit? Ann Biomed Eng. 2015;43(5):1260-1269. https://doi.org/10.1007/s10439-015-1283-x
  17. Woolf SH, Grol R, Hutchinson A, et al. Clinical guidelines: potential benefits, limitations, and harms of clinical guidelines. BMJ. 1999;318(7182):527-530.  https://doi.org/10.1136/bmj.318.7182.527
  18. Hurdowar A, Graham ID, Bayley M, et al. Quality of stroke rehabilitation clinical practice guidelines. J Eval Clin Pract. 2007;13(4):657-664.  https://doi.org/10.1111/j.1365-2753.2007.00708.x
  19. Ishemicheskii insul’t i tranzitornaya ishemicheskaya ataka u vzroslykh. Klinicheskie rekomendatsii Ministerstva zdravookhraneniya Rossiiskoi Federatsii. 2021. (In Russ.).
  20. Winstein CJ, Stein J, Arena R, et al. Guidelines for Adult Stroke Rehabilitation and Recovery: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke. 2016;47(6):98-169.  https://doi.org/10.1161/STR.0000000000000098
  21. New Zealand Clinical Guidelines for Stroke Management. 2010. Ministry of Health NZ. HealthGov; 2010 [Internet]. Accessed June 6, 2022. https://www.health.govt.nz/publication/new-zealand-clinical-guidelines-stroke-management-2010
  22. Management of Stroke Rehabilitation Working Group. VA/DODClinical practice guideline for the management of stroke rehabilitation. J Rehabil Res Dev. 2010;47(9):1-43. 
  23. Rudd AG, Bowen A, Young GR, James MA. The latest national clinical guideline for stroke. Clin Med (Lond). 2017;17(2):154-155.  https://doi.org/10.7861/clinmedicine.17-2-154
  24. Clinical guidelines. Stroke Foundation. [Internet]. Accessed June 6, 2022. https://strokefoundation.org.au/What-we-do/For-health-professionals-and-researchers/Clinical-guidelines
  25. Teasell R, Salbach NM, Foley N, et al. Canadian Stroke Best Practice Recommendations: Rehabilitation, Recovery, and Community Participation following Stroke. Part One: Rehabilitation and Recovery Following Stroke; 6th Edition Update 2019. Int J Stroke. 2020;15(7):763-788.  https://doi.org/10.1177/1747493019897843
  26. Scottish Intercollegiate Guidelines Network. Management of Patients with Stroke: Rehabilitation, Prevention and Management of Complications, and Discharge Planning. A National Clinical Guideline. Edinburgh: SIGN; 2010.
  27. Veerbeek J, van Wegen E, Peppen RP, et al. Clinical Practice Guideline for Physical Therapy after Stroke. ResearchGate; 2014. Accessed October 2. 2022. https://www.researchgate.net/publication/282247781_Clinical_Practice_Guideline_for_Physical_Therapy_after_Stroke_Dutch_KNGF-richtlijn_Beroerte
  28. Evidence-Based Review of Stroke Rehabilitation. EBRSR; [Internet]. Accessed June 6, 2022. https://www.ebrsr.com/evidence-review
  29. Dworzynski K, Ritchie G, Fenu E, MacDermott K, Playford ED; Guideline Development Group. Rehabilitation after stroke: summary of NICE guidance. BMJ. 2013;346:f3615.
  30. Calabrò RS, Naro A, Russo M, et al. The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. J Neuroeng Rehabil. 2017;14(1):53.  https://doi.org/10.1186/s12984-017-0268-4
  31. Louie DR, Mortenson WB, Durocher M, et al. Exoskeleton for post-stroke recovery of ambulation (ExStRA): study protocol for a mixed-methods study investigating the efficacy and acceptance of an exoskeleton-based physical therapy program during stroke inpatient rehabilitation. BMC Neurol. 2020;20(1):35.  https://doi.org/10.1186/s12883-020-1617-7
  32. Louie DR, Mortenson WB, Durocher M, et al. Efficacy of an exoskeleton-based physical therapy program for non-ambulatory patients during subacute stroke rehabilitation: a randomized controlled trial. J Neuroeng Rehabil. 2021;18(1):149.  https://doi.org/10.1186/s12984-021-00942-z
  33. Li DX, Zha FB, Long JJ, et al. Effect of Robot Assisted Gait Training on Motor and Walking Function in Patients with Subacute Stroke: A Random Controlled Study. J Stroke Cerebrovasc Dis. 2021;30(7):105807. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105807
  34. Yeung LF, Ockenfeld C, Pang MK, et al. Randomized controlled trial of robot-assisted gait training with dorsiflexion assistance on chronic stroke patients wearing ankle-foot-orthosis. J Neuroeng Rehabil. 2018;15(1):51.  https://doi.org/10.1186/s12984-018-0394-7
  35. Calabrò RS, Naro A, Russo M, et al. Shaping neuroplasticity by using powered exoskeletons in patients with stroke: a randomized clinical trial. J Neuroeng Rehabil. 2018;15(1):35.  https://doi.org/10.1186/s12984-018-0377-8

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.