The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Andreev A.Yu.

Krasnogorsk City Hospital No 1;
Imtek LLC

Osidak E.O.

Imtek Co. Ltd.;
National Medical Research Center of Cardiology named after academician E.I. Chazov

Avetisov S.E.

Krasnov Research Institute of Eye Disease;
I.M. Sechenov First Moscow State Medical University (Sechenov University)

Voronin G.V.

Research Institute of Eye Diseases

Andreeva N.A.

Research Institute of Eye Diseases

Agaeva L.M.

Research Institute of Eye Diseases

Yu Y.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Domogatskiy S.P.

Imtek Co. Ltd.;
National Medical Research Center of Cardiology named after academician E.I. Chazov

Modern prerequisites for creating a collagen-based artificial analogue of the corneal stroma

Authors:

Andreev A.Yu., Osidak E.O., Avetisov S.E., Voronin G.V., Andreeva N.A., Agaeva L.M., Yu Y., Domogatskiy S.P.

More about the authors

Journal: Russian Annals of Ophthalmology. 2022;138(5‑2): 253‑259

Read: 2233 times


To cite this article:

Andreev AYu, Osidak EO, Avetisov SE, et al. . Modern prerequisites for creating a collagen-based artificial analogue of the corneal stroma. Russian Annals of Ophthalmology. 2022;138(5‑2):253‑259. (In Russ.)
https://doi.org/10.17116/oftalma2022138052253

Recommended articles:
Hybrid wound coating in reha­bilitation of severe thermal burns. (An expe­rimental study). Problems of Balneology, Physiotherapy and Exercise Therapy. 2024;(6-2):40-49
Modern methods of correction of age-related changes in the female body. Plastic Surgery and Aesthetic Medi­cine. 2025;(1):90-96
Changes in diagnosis-related group payment model in the Russian Fede­ration in 2025. Medi­cal Technologies. Asse­ssment and Choice. 2025;(2):18-30

References:

  1. Gain P, Jullienne R, He Z, Aldossary M, Acquart S, Cognasse F, Thuret G. Global Survey of Corneal Transplantation and Eye Banking. JAMA Ophthalmology. 2016;134(2):167-173.  https://doi.org/10.1001/jamaophthalmol.2015.4776
  2. Roy A, Chaurasia S, Fernandes M, Das S. Impact of nationwide COVID-19 lockdown on keratoplasty and eye banking in India: A survey of cornea surgeons and eye banks. Indian Journal of Ophthalmol. 2021;69(3):706-708.  https://doi.org/10.4103/ijo.IJO_2476_20
  3. Gupta N, Vashist P, Ganger A, Tandon R, Gupta SK. Eye donation and eye banking in India. The National Medical Journal of India. 2018;31(5):283-286.  https://doi.org/10.4103/0970-258X.261189
  4. Matthyssen S, Van den Bogerd B, Dhubhghaill SN, Koppen C, Zakaria N. Corneal regeneration: A review of stromal replacements. Acta Biomaterialia. 2018;69:31-41.  https://doi.org/10.1016/j.actbio.2018.01.023
  5. Tidu A, Schanne-Klein MC, Borderie VM. Development, structure, and bioengineering of the human corneal stroma: A review of collagen-based implants. Experimental Eye Research. 2020;200:108256. https://doi.org/10.1016/j.exer.2020.108256
  6. Fagerholm P, Lagali NS, Ong JA, Merrett K, Jackson WB, Polarek JW, Suuronen EJ, Liu Y, Brunette I, Griffith M. Stable corneal regeneration four years after implantation of a cell-free recombinant human collagen scaffold. Biomaterials. 2014;35(8):2420-2427. https://doi.org/10.1016/j.biomaterials.2013.11.079
  7. Hosseinkhani M, Mehrabani D, Karimfar MH, Bakhtiyari S, Manafi A, Shirazi R. Tissue engineered scaffolds in regenerative medicine. World Journal of Plastic Surgery. 2014;3(1):3-7. 
  8. Selvam S, Thomas PB, Yiu SC. Tissue engineering: current and future approaches to ocular surface reconstruction. The Ocular Surface. 2006;4(3): 120-136.  https://doi.org/10.1016/s1542-0124(12)70039-3
  9. Chaudhary C, Garg T. Scaffolds: A Novel Carrier and Potential Wound Healer. Critical Reviews in Therapeutic Drug Carrier Systems. 2015;32(4): 277-321.  https://doi.org/10.1615/critrevtherdrugcarriersyst.2015011246
  10. Morais JM, Papadimitrakopoulos F, Burgess DJ. Biomaterials/tissue interactions: possible solutions to overcome foreign body response. The AAPS Journal. 2010;12(2):188-196.  https://doi.org/10.1208/s12248-010-9175-3
  11. Allan B. Closer to nature: new biomaterials and tissue engineering in ophthalmology. The British Journal of Ophthalmology. 1999;83(11):1235-1240. https://doi.org/10.1136/bjo.83.11.1235
  12. Ding F, Deng H, Du Y, Shi X, Wang Q. Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale. 2014;6(16): 9477-9493. https://doi.org/10.1039/c4nr02814g
  13. Yang TL. Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. International Journal of Molecular Sciences. 2011; 12(3):1936-1963. https://doi.org/10.3390/ijms12031936
  14. Francesko A, Tzanov T. Chitin, chitosan and derivatives for wound healing and tissue engineering. Advances in Biochemical Engineering/Biotechnology. 2011;125:1-27.  https://doi.org/10.1007/10_2010_93
  15. Costa-Pinto AR, Reis RL, Neves NM. Scaffolds based bone tissue engineering: the role of chitosan. Tissue Engineering. Part B, Reviews. 2011;17(5):331-347.  https://doi.org/10.1089/ten.teb.2010.0704
  16. No HK, Park NY, Lee SH, Meyers SP. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International Journal of Food Microbiology. 2002;74(1-2):65-72.  https://doi.org/10.1016/s0168-1605(01)00717-6
  17. Khor E, Lim LY. Implantable applications of chitin and chitosan. Biomaterials. 2003;24(13):2339-2349. https://doi.org/10.1016/s0142-9612(03)00026-7
  18. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen J, Lu H, Richmond J, Kaplan DL. Silk-based biomaterials. Biomaterials. 2003;24(3):401-416.  https://doi.org/10.1016/s0142-9612(02)00353-8
  19. Kundu B, Rajkhowa R, Kundu SC, Wang X. Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev. 2013 Apr;65(4):457-70. Epub 2012 Nov 5. PMID: 23137786. https://doi.org/10.1016/j.addr.2012.09.043.
  20. Malyugin BE, Borzenok SA, Saburina IN, Repin VS, Kosheleva NV, Kolokoltsova TD, Zurina IM, Komakh YuA, Zheltonozhko AA, Popov IA, Davydova LI, Bogush VG, Agapov II. Development of bioengineering design of artificial cornea based on tissue matrix made of spidroin and cultivated cells of eye limbus zone. Oftal’mohirurgiya. 2013;4:89-97. (In Russ.).
  21. Chan BP, Leong KW. Scaffolding in tissue engineering: general approaches and tissue-specific considerations. European Spine Journal. 2008;17 suppl 4(suppl 4):467-479.  https://doi.org/10.1007/s00586-008-0745-3
  22. Gelse K, Pöschl E, Aigner T. Collagens — structure, function, and biosynthesis. Advanced Drug Delivery Reviews. 2003;55(12):1531-1546. https://doi.org/10.1016/j.addr.2003.08.002
  23. Ricard-Blum S. The collagen family. Cold Spring Harbor Perspectives in Biology. 2011;3(1):a004978. https://doi.org/10.1101/cshperspect.a004978
  24. Lee CH, Singla A, Lee Y. Biomedical applications of collagen. International Journal of Pharmaceutics. 2001;221(1-2):1-22.  https://doi.org/10.1016/s0378-5173(01)00691-3
  25. Lin YC, Tan FJ, Marra KG, Jan SS, Liu DC. Synthesis and characterization of collagen/hyaluronan/chitosan composite sponges for potential biomedical applications. Acta Biomaterialia. 2009;5(7):2591-2600. https://doi.org/10.1016/j.actbio.2009.03.038
  26. Rosso F, Marino G, Giordano A, Barbarisi M, Parmeggiani D, Barbarisi A. Smart materials as scaffolds for tissue engineering [published correction appears in Journal of Cellular Physiology. 2006;209(3):1054]. Journal of Cellular Physiology. 2005;203(3):465-470.  https://doi.org/10.1002/jcp.20270
  27. Sorushanova A, Delgado LM, Wu Z, Shologu N, Kshirsagar A, Raghunath R, Mullen AM, Bayon Y, Pandit A, Raghunath M, Zeugolis DI. The Collagen Suprafamily: From Biosynthesis to Advanced Biomaterial Development. Advanced Materials. 2019;31(1):e1801651. https://doi.org/10.1002/adma.201801651
  28. Lynn AK, Yannas IV, Bonfield W. Antigenicity and immunogenicity of collagen. Journal of Biomedical Materials Research. Part B, Applied Biomaterials. 2004;71(2):343-354.  https://doi.org/10.1002/jbm.b.30096
  29. Antoine EE, Vlachos PP, Rylander MN. Review of collagen I hydrogels for bioengineered tissue microenvironments: characterization of mechanics, structure, and transport. Tissue Engineering. Part B, Reviews. 2014;20(6): 683-696.  https://doi.org/10.1089/ten.TEB.2014.0086
  30. Parenteau-Bareil R, Gauvin R, Berthod F. Collagen-Based Biomaterials for Tissue Engineering Applications. Materials. 2010;3(3):1863-1887. https://doi.org/10.3390/ma3031863
  31. Ahn JI, Kuffova L, Merrett K, Mitra D, Forrester JV, Li F, Griffith M. Crosslinked collagen hydrogels as corneal implants: effects of sterically bulky vs. non-bulky carbodiimides as crosslinkers. Acta Biomaterialia. 2013;9(8):7796-7805. https://doi.org/10.1016/j.actbio.2013.04.014
  32. Rafat M, Li F, Fagerholm P, Lagali NS, Watsky MA, Munger R, Matsuura T, Griffith M. PEG-stabilized carbodiimide crosslinked collagen-chitosan hydrogels for corneal tissue engineering. Biomaterials. 2008;29(29):3960-3972. https://doi.org/10.1016/j.biomaterials.2008.06.017
  33. van Luyn MJ, van Wachem PB, Damink LO, Dijkstra PJ, Feijen J, Nieuwenhuis P. Relations between in vitro cytotoxicity and crosslinked dermal sheep collagens. Journal of Biomedical Materials Research. 1992;26(8):1091-1110. https://doi.org/10.1002/jbm.820260810
  34. Hackett JM, Lagali N, Merrett K, Edelhauser H, Sun Y, Gan L, Griffith M, Fagerholm P. Biosynthetic corneal implants for replacement of pathologic corneal tissue: performance in a controlled rabbit alkali burn model. Investigative Ophthalmology & Visual Science. 2011;52(2):651-657.  https://doi.org/10.1167/iovs.10-5224
  35. Mahdavi SS, Abdekhodaie MJ, Mashayekhan S, Baradaran-Rafii A, Djalilian AR. Bioengineering Approaches for Corneal Regenerative Medicine. Tissue Engineering and Regenerative Medicine. 2020;17(5):567-593.  https://doi.org/10.1007/s13770-020-00262-8
  36. Zaharov VD, Zayratyants OV, Andreev AYu, Osidak EO, Borzenok SA, Krasheninnikov SV, Karyagina AS, Domogatskiy SP. Influence of rhbmp-2 growth factor in composition with collagen carrier on morphological and biomechanical characteristics of cornea Oftal’mohirurgiya. 2016;4:20-28. (In Russ.). https://doi.org/10.25276/0235-4160-2016-4-20-29
  37. Zaharov VD, Andreev AYu, Zayratyants OV, Osidak EO, Borzenok SA, Krasheninnikov SV, Karyagina AS, Domogatskiy SP. Morphological changes in the cornea of rabbits under influence of the growth factor of bone and cartilage tissue rhBMP-2 as part of an intracorneal collagen implant. Klinicheskaya i eksperimental’naya morfologiya. 2016;(4):36-42. (In Russ.).
  38. Liu Y, Gan L, Carlsson DJ, Fagerholm P, Lagali N, Watsky MA, Munger R, Hodge WG, Priest D, Griffith M. A simple, cross-linked collagen tissue substitute for corneal implantation. Investigative Ophthalmology and Visual Science. 2006;47(5):1869-1875. https://doi.org/10.1167/iovs.05-1339
  39. Orwin EJ, Borene ML, Hubel A. Biomechanical and optical characteristics of a corneal stromal equivalent. Journal of Biomechanical Engineering. 2003; 125(4):439-444.  https://doi.org/10.1115/1.1589773
  40. Kato M, Taguchi T, Kobayashi H. An attempt to construct the stroma of cornea using primary cultured corneal cells. Journal of Nanoscience and Nanotechnology. 2007;7(3):748-751.  https://doi.org/10.1166/jnn.2007.518
  41. Tidu A, Ghoubay-Benallaoua D, Lynch B, Haye B, Illoul C, Allain JM, Borderie VM, Mosser G. Development of human corneal epithelium on organized fibrillated transparent collagen matrices synthesized at high concentration. Acta Biomaterialia. 2015;22:50-58.  https://doi.org/10.1016/j.actbio.2015.04.018
  42. Rajan N, Habermehl J, Coté MF, Doillon CJ, Mantovani D. Preparation of ready-to-use, storable and reconstituted type I collagen from rat tail tendon for tissue engineering applications. Nature Protocols. 2006;1(6):2753-2758. https://doi.org/10.1038/nprot.2006.430
  43. Habermehl J, Skopinska J, Boccafoschi F, Sionkowska A, Kaczmarek H, Laroche G, Mantovani D. Preparation of ready-to-use, stockable and reconstituted collagen. Macromolecular Bioscience. 2005;5(9):821-828.  https://doi.org/10.1002/mabi.200500102
  44. Olsen D, Yang C, Bodo M, Chang R, Leigh S, Baez J, Carmichael D, Perälä M, Hämäläinen ER, Jarvinen M, Polarek J. Recombinant collagen and gelatin for drug delivery. Advanced Drug Delivery Reviews. 2003;55(12):1547-1567. https://doi.org/10.1016/j.addr.2003.08.008
  45. Yang C, Hillas PJ, Báez JA, Nokelainen M, Balan J, Tang J, Spiro R, Polarek JW. The application of recombinant human collagen in tissue engineering. BioDrugs. 2004;18(2):103-119.  https://doi.org/10.2165/00063030-200418020-00004
  46. Liu W, Merrett K, Griffith M, Fagerholm P, Dravida S, Heyne B, Scaiano JC, Watsky MA, Shinozaki N, Lagali N, Munger R, Li F. Recombinant human collagen for tissue engineered corneal substitutes. Biomaterials. 2008; 29(9):1147-1158. https://doi.org/10.1016/j.biomaterials.2007.11.011
  47. Merrett K, Fagerholm P, McLaughlin CR, Dravida S, Lagali N, Shinozaki N, Watsky MA, Munger R, Kato Y, Li F, Marmo CJ, Griffith M. Tissue-engineered recombinant human collagen-based corneal substitutes for implantation: performance of type I versus type III collagen. Investigative Ophthalmology and Visual Science. 2008;49(9):3887-3894. https://doi.org/10.1167/iovs.07-1348
  48. Buznyk O, Pasyechnikova N, Islam MM, Iakymenko S, Fagerholm P, Griffith M. Bioengineered Corneas Grafted as Alternatives to Human Donor Corneas in Three High-Risk Patients. Clinical and Translational Science. 2015;8(5):558-562.  https://doi.org/10.1111/cts.12293
  49. Wand K, Neuhann R, Ullmann A, Plank K, Baumann M, Ritter R, Griffith M, Lohmann CP, Kobuch K. Riboflavin-UV — a crosslinking for fixation of biosynthetic corneal collagen implants. Cornea. 2015;34(5):544-549.  https://doi.org/10.1097/ICO.0000000000000399
  50. Wollensak G, Spörl E, Reber F, Pillunat L, Funk R. Corneal endothelial cytotoxicity of riboflavin/UVA treatment in vitro. Ophthalmic Research. 2003; 35(6):324-328.  https://doi.org/10.1159/000074071
  51. Wollensak G, Spoerl E, Reber F, Seiler T. Keratocyte cytotoxicity of riboflavin/UVA-treatment in vitro. Eye (London, England). 2004;18(7):718-722.  https://doi.org/10.1038/sj.eye.6700751
  52. Wollensak G, Spoerl E, Wilsch M, Seiler T. Keratocyte apoptosis after corneal collagen cross-linking using riboflavin/UVA treatment. Cornea. 2004; 23(1):43-49.  https://doi.org/10.1097/00003226-200401000-00008
  53. Nagarajan N, Dupret-Bories A, Karabulut E, Zorlutuna P, Vrana NE. Enabling personalized implant and controllable biosystem development through 3D printing. Biotechnology Advances. 2018;36(2):521-533.  https://doi.org/10.1016/j.biotechadv.2018.02.004
  54. Hospodiuk M, Dey M, Sosnoski D, Ozbolat IT. The bioink: A comprehensive review on bioprintable materials. Biotechnology Advances. 2017;35(2): 217-239.  https://doi.org/10.1016/j.biotechadv.2016.12.006
  55. Chevallay B, Herbage D. Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy. Medical and Biological Engineering and Computing. 2000;38(2):211-218.  https://doi.org/10.1007/BF02344779
  56. Włodarczyk-Biegun MK, Del Campo A. 3D bioprinting of structural proteins. Biomaterials. 2017;134:180-201.  https://doi.org/10.1016/j.biomaterials.2017.04.019
  57. Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, Ramadan MH, Hudson AR, Feinberg AW. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Science Advances. 2015;1(9):e1500758. https://doi.org/10.1126/sciadv.1500758
  58. Diamantides N, Wang L, Pruiksma T, Siemiatkoski J, Dugopolski C, Shortkroff S, Kennedy S, Bonassar LJ. Correlating rheological properties and printability of collagen bioinks: the effects of riboflavin photocrosslinking and pH. Biofabrication. 2017;9(3):034102. https://doi.org/10.1088/1758-5090/aa780f
  59. Osidak EO, Karalkin PA, Osidak MS, Parfenov VA, Sivogrivov DE, Pereira FDAS, Gryadunova AA, Koudan EV, Khesuani YD, Kasyanov VA, Belousov SI, Krasheninnikov SV, Grigoriev TE, Chvalun SN, Bulanova EA, Mironov VA, Domogatsky SP. Viscoll collagen solution as a novel bioink for direct 3D bioprinting. Journal of Materials Science. Materials in Medicine. 2019; 30(3):31.  https://doi.org/10.1007/s10856-019-6233-y
  60. Isaacson A, Swioklo S, Connon CJ. 3D bioprinting of a corneal stroma equivalent. Experimental Eye Research. 2018;173:188-193.  https://doi.org/10.1016/j.exer.2018.05.010
  61. Duarte Campos DF, Rohde M, Ross M, Anvari P, Blaeser A, Vogt M, Panfil C, Yam GH, Mehta JS, Fischer H, Walter P, Fuest M. Corneal bioprinting utilizing collagen-based bioinks and primary human keratocytes. Journal of Biomedical Materials Research. Part A. 2019;107(9):1945-1953. https://doi.org/10.1002/jbm.a.36702
  62. Freegard T. The physical basis of transparency of the normal cornea. Eye. 1997;11(Pt 4):465-471.  https://doi.org/10.1038/eye.1997.127
  63. AvetisovSÉ, Narbut MN. Corneal transparency: anatomical basis and evaluation methods. Vestnik oftal’mologii. 2017;133(5):84-91. (In Russ.). https://doi.org/10.17116/oftalma2017133584-90
  64. Meek KM, Knupp C. Corneal structure and transparency. Progress in Retinal and Eye Research. 2015;49:1-16.  https://doi.org/10.1016/j.preteyeres.2015.07.001

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.