The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Avetisov S.E.

Krasnov Research Institute of Eye Disease;
I.M. Sechenov First Moscow State Medical University (Sechenov University)

Osipyan G.A.

Research Institute of Eye Diseases;
Center Vision Recovery

Abukerimova A.K.

Research Institute of Eye Diseases

Akovantseva A.A.

Institute of Photonic Technologies of the Crystallography and Photonics Research Center

Efremov Yu.M.

Institute of Regenerative Medicine of the I.M. Sechenov First Moscow State Medical University (Sechenov University)

Frolova A.A.

Institute for Regenerative Medicine of the Sechenov University

Kotova S.L.

Institute of Regenerative Medicine of the I.M. Sechenov First Moscow State Medical University (Sechenov University);
N.N. Semenov Federal Research Center for Chemical Physics

Timashev P.S.

Institute for Regenerative Medicine of the I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)

Experimental studies of the biomechanical properties of the cornea

Authors:

Avetisov S.E., Osipyan G.A., Abukerimova A.K., Akovantseva A.A., Efremov Yu.M., Frolova A.A., Kotova S.L., Timashev P.S.

More about the authors

Journal: Russian Annals of Ophthalmology. 2022;138(3): 124‑131

Read: 1762 times


To cite this article:

Avetisov SE, Osipyan GA, Abukerimova AK, et al. . Experimental studies of the biomechanical properties of the cornea. Russian Annals of Ophthalmology. 2022;138(3):124‑131. (In Russ.)
https://doi.org/10.17116/oftalma2022138031124

Recommended articles:
Sele­ctive asse­ssment of biomechanical properties of the lens capsule. Russian Annals of Ophthalmology. 2024;(6):15-23

References:

  1. DelMonte DW, Terry K. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37(3):588-598.  https://doi.org/10.1016/j.jcrs.2010.12.037
  2. Sinha RA, Dupps WJ, Roberts CJ. Comparison of biomechanical effects of small-incision lenticule extraction and laser in situ keratomileusis: Finite-element analysis. J Cataract Refract Surg. 2014;40(6):971-980.  https://doi.org/10.1016/j.jcrs.2013.08.065
  3. Reinstein DZ, Archer TJ, Randleman JB. Mathematical model to compare the relative tensile strength of the cornea after PRK, LASIK, and small incision lenticule extraction. J Refract Surg. 2013;29(7):454-460.  https://doi.org/10.3928/1081597X-20130617-03
  4. Sekundo W, Kunert KS, Blum M. Small incision corneal refractive surgery using the Small Incision Lenticule Extraction (SMILE) procedurefor the correction of myopia and myopic astigmatism: Results of a 6-month prospective study. Brit J Ophthalmol. 2011;95(3):335-339.  https://doi.org/10.1136/bjo.2009.174284
  5. Shah R, Shah S, Sengupta S. Results of small incision lenticule extraction: All-in-one femtosecond laser refractive surgery. J Cataract Refract Surg. 2011;37(1):127-137.  https://doi.org/10.1016/j.jcrs.2010.07.033
  6. Khamar P, Shetty R, Vaishnav R, Francis M, Nuijts R, Roy AS. Comparative Study Biomechanics of LASIK Flap and SMILE Cap: A Prospective, Clinical Study. J Refract Surg. 2019;35(5):324-332.  https://doi.org/10.3928/1081597X-20190319-01
  7. Pedersen IB, Bak-Nielsen S, Vestergaard AH, Ivarsen A, Hjortdal J. Comparative Study Corneal biomechanical properties after LASIK, ReLEx flex, and ReLEx smile by Scheimpflug-based dynamic tonometry. Graefes Arch Clin Exp Ophthalmol. 2014;252(8):1329-1335. https://doi.org/10.1007/s00417-014-2667-6
  8. Bryant MR, McDonnell PJ. Constitutive laws for biomechanical modeling of refractive surgery. J Biomech Eng. 1996;118:473-481.  https://doi.org/10.1115/1.2796033
  9. Hjortdal JO. Regional elastic performance of the human cornea. J Biomech. 1996;29:931-942.  https://doi.org/10.1016/0021-9290(95)00152-2
  10. Hoeltzel DA, Altman P, Buzard K, Choe KI. Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas. J Biomech Eng. 1992;114:202-215.  https://doi.org/10.1115/1.2891373
  11. Iomdina EN. Comparative biomechanical properties of the cornea and the sclera Proc. of 14th European Society of Biomechanics (ESB) conference. 2004; CD Edition.
  12. Avetisov SE, Bubnova IA, Antonov AA. Clinical and experimental aspects of investigation of biomechanical properties of corneoscleral shell. The Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2013;129(5):83-91. (In Russ.).
  13. Avetisov SE, Bubnova IA, Antonov AA. Standard indices of the biomechanical properties of corneoscleral capsule of the eye. Natsionalnyi zhurnal glaukoma. 2012;11(3):5-11. (In Russ.).
  14. Avetisov SE, Mamikonian VR, Trufanov SV, Osipian GA. Selective principle of modern approaches in keratoplasty. The Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2013;129(5):97-103. (In Russ.).
  15. Terry MA. The evolution of lamellar grafting techniques over twenty-five years. Cornea. 2000;19:611-616.  https://doi.org/10.1097/00003226-200009000-00006
  16. Price M, Gupta P, Lass J, Francis W, Price Jr. EK (DLEK, DSEK, DMEK): New Frontier in Cornea. Surgery.nu Rev Vis Sci. 2017;3:69-90.  https://doi.org/10.1146/annurev-vision-102016-061400
  17. Iomdina EN. Biomechanical and biochemical disorders of the sclera in progressive myopia and methods of their correction. In: Avetisov SE, Kashchenko TP, Shamshinova AM, eds. Zritel’nyye funktsii i ikh korrektsiya u detey [Visual functions and their correction in children]. M.: Meditsina; 2005. (In Russ.).
  18. Nagel E, Vilser W, Lanzl I. Age, blood pressure, and vessel diameteras factors influencing the arterial retinal flicker response. Invest Ophthalmol Vis Sci. 2004;45:1486-1492. https://doi.org/10.1167/iovs.03-0667
  19. Avetisov SE, Bubnova IA, Antonov AA. Once again on diagnostic possibilities of elastotonometry. The Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2008;124(5):19-22. (In Russ.).
  20. Avetisov SE, Bubnova IA, Novikov IA, Antonov AA, Siplivy VI, Kuznetsov AV. Fibrous tunic biomechanics and biometric indicies. Report 1. The impact of axial length, thickness and corneal curvature. The Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2011;127(3):3-5. (In Russ.).
  21. Avetisov SE, Bubnova IA, Petrov SYu, Antonov AA, Reshchikova VS. Features of the biomechanical properties of the fibrous layer of the eye whis primary open-angle glaucoma. Natsionalnyi zhurnal glaukoma. 2012;(4):7-11. (In Russ.).
  22. Avetisov SE, Bubnova IA, Novikov IA, Antonov AA, Siplivyi VI. Experimental study on the mechanical strain of corneal collagen. J Biomech. 2013;46(10):1648-1654. https://doi.org/10.1016/j.jbiomech.2013.04.008
  23. Canetta E, Adya AK. Atomic force microscopy: applications to nanobiotechnology. J Indian Chem Soc. 2005;2:1147-1172.
  24. Kasas S, Dietler G. Probing nanomechanical properties from biomolecules to living cells. Pflugers Arch. 2008;456:13-27.  https://doi.org/10.1007/s00424-008-0448-y
  25. Li QS, Lee GY, Ong CN, Lim CT. AFM indentation study of breast cancer cells. Biochem Biophys Res Commun. 2008;374:609-613.  https://doi.org/doi: 10.1016/j.bbrc.2008.07.078
  26. Radmacher M. Studying the mechanics of cellular processes by atomic force microscopy. Methods Cell Mech. 2007;83:347-372.  https://doi.org/10.1016/S0091-679X(07)83015-9
  27. Wagh AA, Roan E, Chapman KE, Desai LP, Rendon DA, Eckstein EC, Waters CM. Localized elasticity measured in epithelial cells migrating at a wound edge using atomic force microscopy. Am J Physiol Lung Cell Mol Physiol. 2008;295:54-60.  https://doi.org/10.1152/ajplung.00475.2007
  28. Avetisov KS, Bakhchieva NA, Avetisov SE, Novikov IA. On the study of the biomechanical properties of the lens capsule. Tochka zreniya. Vostok-Zapad = Point of view. East-West. 2018;(1):12-14. (In Russ.).
  29. Avetisov KS, Bakhchieva NA, Avetisov SE, Novikov IA, Belikov NV, Khaidukova IV. Biomechanical properties of the anterior lens capsule after manual and femtolaser capsulotomy. The Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2019;135(1):4-11. (In Russ., In Engl.). https://doi.org/10.17116/oftalma20191350114
  30. Hoeltzel DA, Altman P, Buzard K, Choe KI. Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas. J Biomech Eng. 1992;114:202-215.  https://doi.org/10.1115/1.2891373
  31. Elsheikh A, Wang DF, Pye D. Determination of the modulus of elasticity of the human cornea. J Refract Surg. 2007;23:808-818. 
  32. Avetisov SE, Mamikonyan VR. Keratorefrakcionnaja hirurgija [Keratorefractive surgery]. M.: Poligran Publ.; 1993. (In Russ.).
  33. Avetisov SE, Mamikonyan VR, Zavalishin NN, Nenyukov AK. Experimental study of mechanical properties of the cornea and sclera adjacent areas. Ophthalmologicheskii Zhurnal. 1988;(4):233-237. (In Russ.).
  34. Ayba EE, Malyugin BE. Results of anterior deep lamellar keratoplasty by the «big bladder» method using the method of identification of Descemet’s membrane detachment. In: Aktual’nyye problemy oftal’mologii: VI Vserosiyskaya nauchnaya konferentsiya molodykh uchenykh s uchastiyem inostrannykh spetsialistov: Tezisy dokladov [Actual problems of ophthalmology: VI All-Russian Scientific Conf. young scientists with the participation of foreign specialists: Abstracts]. M. 2011. (In Russ.). https://eyepress.ru/article.aspx?9185
  35. Fisher RF. Elastic constants of the human lens capsule. Physiol. 1969; 201(1):1-19.  https://doi.org/10.1113/physiol.19.9.sp008739
  36. Anderson K, El-Sheikh A, Newson T. Application of structural analysis to the mechanical behavior of the cornea. J R Soc Lond Interface. 2004;1:1-13.  https://doi.org/10.1098/rsif.2004.0002
  37. Cogan DG, Kinsey VE. The cornea. V. Physiologic aspects. Arch. Ophthalmol. 1942;28:661.  https://doi.org/10.1126/science.95.2476.607
  38. Waring GO. Regional elastic performance of the human cornea. J Biomechanics. 1996;7:931-942.  https://doi.org/10.1016/0021-9290(95)00152-2
  39. Jue B, Maurice DM. The Mechanical Properties of the Rabbit and Human Cornea. Biomechanics. 1986;19(10):847-853.  https://doi.org/10.1016/0021-9290(86)90135-1
  40. Danielsen CC. Tensile mechanical and creep properties of Descemet’s membrane and lens capsule. Exp Eye Res. 2004;79(3):343-350.  https://doi.org/10.1016/j.exer.2004.05.014
  41. Andreassen TT, Simonsen AH, Oxlund H. Biomechanical properties of keratoconus and normal corneas. Exp Eye Res. 1980;31:435-441.  https://doi.org/10.1016/s0014-4835(80)80027-3
  42. Nash SR, Green PR, Foster CS. Comparison of mechanical properties of keratoconus and normal corneas. Exp Eye Res. 1982;35:413-423.  https://doi.org/10.1016/0014-4835(82)90040-9
  43. Canetta E, Adya AK. Atomic force microscopy: applications to nanobiotechnology. J Indian Chem Soc. 2005;82:1147-1172.
  44. Gamidov AA, Baryshev KV, Perevozchikov KA, Surnina ZV. Atomic force microscopy in the study of retinal structure. The Russian Annals of Ophthalmology = Vestnik oftal’mologii. 2020;136(4):251-257. (In Russ.). https://doi.org/10.17116/oftalma2020136042251
  45. Li QS, Lee GY, Ong CN, Lim CT. AFM indentation study of breast cancer cells. Biochem Biophys Res Commun. 2008;374:609-613.  https://doi.org/10.1016/j.bbrc.2008.07.078
  46. Radmacher M. Studying the mechanics of cellular processes by atomic force microscopy. Methods Cell Biol. 2007;83:347-372.  https://doi.org/10.1016/S0091-679X(07)83015-9
  47. Sirghi L, Ponti J, Broggi F, Rossi F. Probing elasticity and adhesion of live cells by atomic force microscopy indentation. Eur Biophys J. 2008;37(6):935-945.  https://doi.org/10.1007/s00249-008-0311-2
  48. Wagh AA, Roan E, Chapman KE, Desai LP, Rendon DA, Eckstein EC, Waters CM. Localized elasticity measured in epithelial cells migrating at a wound edge using atomic force microscopy. Am J Physiol Lung Cell Mol Physiol. 2008;295:54-60.  https://doi.org/10.1152/ajplung.00475.2
  49. Last JA, Liliensiek SJ, Nealey PF, Murphy CJ. Determining the mechanical properties of human corneal basement membranes with atomic force microscopy. J Structur Biol. 2009;167:19-24.  https://doi.org/10.1016/j.jsb.2009.03.012
  50. Last J, Sara MT, Croasdale CR, Russell P, Murphy CJ. Compliance profile of the human cornea as measured by atomic force microscopy. Micron. 2012;43(12):1293-1298. https://doi.org/10.1016/j.micron.2012.02.014
  51. Abrams GA, Schaus SS, Goodman SL, Nealey PF, Murphy CJ. Nanoscale topography of the corneal epithelial basement membrane and Descemet’s membrane of the human. Cornea. 2000;19:57-64.  https://doi.org/10.1097/00003226-200001000-00012
  52. Lavanya Devi AL, Nongthomba U, Bobji MS. Quantitative characterization of adhesion and stiffness of corneal lens of Drosophila melanogaster using atomic force microscopy. J Mech Behav Biomed Mater. 2016;53:161-173.  https://doi.org/10.1016/j.jmbbm.2015.08.015
  53. Lombardo M, Lombardo G, Carbone G, De Santo MP, Barberi R, Serrao S. Biomechanics of the anterior human corneal tissue investigated with Atomic Force Microscopy. Invest Ophthalmol Vis Sci. 2012;53(2):1050-1057. https://doi.org/10.1167/iovs.11-8720
  54. Dias JM, Ziebarth NM. Anterior and posterior corneal stroma elasticity assessed using nanoindentation. Exp Eye Res. 2013;115:41-46.  https://doi.org/10.1016/j.exer.2013.06.004
  55. Thomasy SM, Morgan JT, Wood JA, Murphy CJ, Russell P. Substratum. stiffness and latrunculin B modulate the gene expression of the mechanotransducers YAP and TAZ in human trabecular meshworkcells. Exp Eye Res. 2013;113:66-73.  https://doi.org/10.1016/j.exer.2013.05.014
  56. Weber IP, Rana M, Thomas PB, Dimov IB, Franze K, Madhavan RS. Effect of vital dyes on human corneal endothelium and elasticity of Descemet’s membrane. PLoS One. 2017;12(9):e0184375. https://doi.org/10.1371/journal.pone.0184375
  57. Candiello J, Cole GJ, Halfter W. Age-dependent changes in the structure, composition and biophysical properties of a human basement membrane. Matrix Biol. 2010;29:402-410.  https://doi.org/10.1016/j.matbio.2010.03.004
  58. Hafter W, Moes S, Asgeirsson DO, Oertle P, Melo-Herraiz E, Plodinec M, Jenoe P, Henrich PB. Diabetes-related changes in the protein composition and biomechanical properties of human retinal vascular basement membranes. PloS One. 2018;12:e0189857. https://doi.org/10.1371/journal.pone.0189857
  59. Halfter W, Candiello J, Hu H, Zhang P, Schreiber E, Balasubramani M. Protein composition and biomechanical properties of in vivo-derived basement membranes. Cell Adhes. Migrat. 2013;7:64-71.  https://doi.org/10.4161/cam.22479
  60. Halfter W, Monnier C, Loparic M, Uechi G, Balasubramani M, Henrich PB. The bi-functional organization of human basement membranes. PloS One. 2013b;8:e67660. https://doi.org/10.1371/journal.pone.0067660
  61. Halfter W, Oertle P, Monnier CA, Camenzind L, Reyes-Lua M, Hu H, Candiello J, Labilloy A, Balasubramani M, Henrich PB, Plodinec M. New concepts in basement membrane biology. FEBS J. 2015;282:4466-4479. https://doi.org/10.1111/febs.13495
  62. Yurchenco PD. Basement membranes; Cell scaffolds and signaling platforms. Cold Spring Harb Perspect Biol. 2011;3a:004911. https://doi.org/10.1101/cshperspect.a004911
  63. Seikiguchi K, Yamada KM. Basement membranes in development and disease. Curr Top Dev Biol. 2018;130:143-191.  https://doi.org/10.1016/bs.ctdb.2018.02.005
  64. Seifert J, Hammer CM, Rheinlaender J, et al. Distribution of Young’s Modulus in Porcine Corneas after Riboflavin/UVA-Induced Collagen Cross-Linking as Measured by Atomic Force Microscopy. PLoS One. 2014;9(1): e88186. https://doi.org/10.1371/journal.pone.0088186
  65. Labate C, De Santo MP, Lombardo G, Lombardo M. Understanding of the Viscoelastic Response of the Human Corneal Stroma Induced by Riboflavin/UV-A Cross-Linking at the Nano Level. PLoS One. 2015;10(4):e0122868. https://doi.org/10.1371/journal.pone.0122868
  66. Dias J, Diakonis VF, Lorenzo M, et al. Corneal stromal elasticity and viscoelasticity assessed by atomic force microscopy after different cross linking protocols. Exp Eye Res. 2015;138:1-5.  https://doi.org/10.1016/j.exer.2015.06.015
  67. Lombardo M, Pucci G, Barberi R, Lombardo G. Interaction of ultraviolet light with the cornea: Clinical implications for corneal crosslinking. J Cataract Refract Surg. 2015;41(2):446-459.  https://doi.org/10.1016/j.jcrs.2014.12.013

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.