The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Matyushchenko A.G.

Research Institute of Eye Diseases

Budzinskaya M.V.

Krasnov Research Institute of Eye Diseases

Petrachkov D.V.

Research Institute of Eye Diseases

Modern understanding of structural and biochemical characteristics of the vitreous in eyes with normal and increased axial length

Authors:

Matyushchenko A.G., Budzinskaya M.V., Petrachkov D.V.

More about the authors

Journal: Russian Annals of Ophthalmology. 2021;137(4): 110‑115

Read: 2069 times


To cite this article:

Matyushchenko AG, Budzinskaya MV, Petrachkov DV. Modern understanding of structural and biochemical characteristics of the vitreous in eyes with normal and increased axial length. Russian Annals of Ophthalmology. 2021;137(4):110‑115. (In Russ.)
https://doi.org/10.17116/oftalma2021137041110

Recommended articles:
Correction of myopia with implantable collamer lenses. Russian Annals of Ophthalmology. 2025;(2):5-15
Microbiota of the ocular surface in children with myopia. Russian Annals of Ophthalmology. 2025;(3):5-12

References:

  1. Goloshchapova AK. Structure and pathology of the vitreous body. Vestnik soveta molodykh uchenykh i spetsialistov Chelyabinskoi oblasti. 2017;4(19)3:24-29. (In Russ.).
  2. Alekseev IB, Belkin VE, Samoylenko AI, Gularia AA. Vitreous. Anatomy, pathology and methods of surgical treatment (literary review). RMZh. Klinicheskaya oftal’mologiya. 2014;(4):224. (In Russ.).
  3. Sebag J. Vitreous: The resplendent enigma. Brit J Ophthalmol. 2009;93:989-991.  https://doi.org/10.1136/bjo.2008.155069
  4. Milston R, Madigan MC, Sebag J. Vitreous floaters: Etiology, diagnostics, and management. Surv Ophthalmol. 2016;61:211-227.  https://doi.org/10.1016/j.survophthal.2015.11.008
  5. Kita T, Sakamoto T, Ishibashi T II. Vitreous. In: Hyalocytes D. Essential Vitreous Cells in Vitreoretinal Health and Disease. Berlin—Heidelberg, Germany: Springer; 2014.
  6. Le Goff MM, Bishop PN. Adult vitreous structure and postnatal changes. Eye (Lond.). 2008;22:1214-1222. https://doi.org/10.1038/eye.2008.21
  7. Whikehart DR. Biochemistry of the eye. 2nd ed. Philadelphia: Butterworth-Heinemann; 2003.
  8. Donati S, Caprani SM, Airaghi G. Vitreous Substitutes: The Present and the Future. Hindawi Publishing Corporation BioMed Res Int. 2014;2014:351804. https://doi.org/10.1155/2014/351804
  9. Reva GV, Reva IV, Yamamoto T. The structure of human vitreous humour. Tikhookeanskii meditsinskii zhurnal. 2011;(1):65-69. (In Russ.).
  10. Spitzer MS, Januschowski K. Aging and age-related changes of the vitreous body. Ophthalmologe. 2015;112(7):552-558.  https://doi.org/10.1007/s00347-015-0031-9
  11. Bishop PN. Structural macromolecules and supramolecular organisation of the vitreous gel. Prog Retin Eye Res. 2000;19(3):323-344.  https://doi.org/10.1016/S1350-9462(99)00016-6
  12. Bishop PN, Crossman MV, McLeod D, Ayad S. Extraction and characterization of the tissue forms of collagen types II and IX from bovine vitreous. Biochem J. 1994;299:497-505.  https://doi.org/10.1042/bj2990497
  13. Gudmann NS, Karsdal MA. Chapter 2 — Type II Collagen. In: Karsdal MA. Biochemistry of Collagens, Laminins and Elastin. Academic Press. 2016;13-20.  https://doi.org/10.1016/B978-0-12-809847-9.00002-7
  14. Bos KJ, Holmes DF, Kadler KE, McLeod D, Morris NP, Bishop PN. Axial structure of the heterotypic collagen fibrils of vitreous humour and cartilage. J Mol Biol. 2001;306:1011-1022. https://doi.org/10.1006/jmbi.2000.4429
  15. Luo YY, Karsdal MA. Chapter 11 — Type XI Collagen. Type XI Collagen. In: Karsdal MA. Biochemistry of Collagens, Laminins and Elastin. Academic Press; 2016;77-80.  https://doi.org/10.1016/b978-0-12-809847-9.00011-8
  16. Gregory KE, Oxford JT, Chen Y, Gambee JE, Gygi SP, Aebersold R, et al. Structural organization of distinct domains within the non-collagenous N-terminal region of collagen type XI. J Biol Chem. 2000;275:11498-11506. https://doi.org/10.1074/jbc.275.15.11498
  17. Yada T, Suzuki S, Kobayashi K, Kobayashi M, Hoshino T, Horie K, et al. Occurrence in chick embryo vitreous humour of a type IX collagen proteoglycan with an extraordinarily large chondroitin sulphate chain and short α1 polypeptide. J Biol Chem. 1990;265:6992-6999.
  18. Builova TV. An open randomized study of the efficacy and safety of the drug Chondroxide in the complex treatment of patients with chronic vertebrogenic lumboishialgia. RMZh. 2010;17:1678-1686. (In Russ.).
  19. Karamanos N, Piperigkou Z, Theocharis A, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson R, Neill T, Iozzo R. Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. Chem Rev. 2018;118:9152-9232. https://doi.org/10.1021/acs.chemrev.8b00354
  20. Li JP, Kusche-Gullberg M. Heparan sulfate: biosynthesis, structure, and function. Int Rev Cell Mol Biol. 2016;325:215-273.  https://doi.org/10.1016/bs.ircmb.2016.02.009
  21. Meyer K, Palmer JW. Meyer K, Palmer JW. The polysaccharide of the vitreous humor. Journal of Biological Chemistry. J Biol Chem. 1934; 107:629-634. 
  22. Balazs EA, Denlinger JL. Ageing changes in the vitreous. In: Dismukes K, Sekular R (eds). Ageing and human visual function. New York: Alan R Liss, Inc; 1982;45-57. 
  23. Suhovskih AV, Grigorieva EV. Proteoglycans in normal physiology and carcinogenesis. Uspekhi molekulyarnoy onkologii = Advances in Molecular Oncology. 2018;5(1):8-25. (In Russ.). https://doi.org/10.17650/2313-805X-2018-5-1-8-25
  24. Halfter W, Dong S, Schurer B, Ring C, Cole GJ, Eller A. Embryonic synthesis of the inner limiting membrane and vitreous body. Invest Ophthalmol Vis Sci. 2005;46:2202-2209. https://doi.org/10.1167/iovs.04-1419
  25. Halfter W, Dong S, Dong A, Eller AW, Nischt R. Origin and turnover of ECM proteins from the inner limiting membrane and vitreous body. Eye. 2008;22:1207-1213. https://doi.org/10.1038/eye.2008.19
  26. Le Goff MM, Sutton MJ, Slevin M, Latif A, Humphries MJ, Bishop PN. Opticin exerts its anti-angiogenic activity by regulating extracellular matrix adhesiveness. J Biol Chem. 2012;287(33):28027-28036. https://doi.org/10.1074/jbc.M111.331157
  27. Ramirez F, Caescu C, Wondimu E, Galatioto J. Marfan syndrome. A connective tissue disease at the crossroads of mechanotransduction, TGFbeta signaling and cell stemness. Matrix Biol. 2018;71:82-89.  https://doi.org/10.1016/j.matbio.2017.07.004
  28. Ogawa K. Scanning electron microscopic study of hyalocytes in the guinea pig eye. Arch Histol Cytol. 2002;65(3):263-268.  https://doi.org/10.1679/aohc.65.263
  29. Suetov AA, Boiko EV. Hyalocytes of the vitreous body and their role in ophthalmic pathology. Vestnik oftal’mologii. 2018;134(6):94-101. (In Russ.). https://doi.org/10.17116/oftalma201813406194
  30. Sakamoto T, Ishibashi T. Hyalocytes: essential cells of the vitreous cavity in vitreoretinal pathophysiology. Retina. 2011;31(2):222-228.  https://doi.org/10.1097/IAE.0b013e3181facfa9
  31. Kishi S. Vitreous Changes in Myopia In: Kishi S. Pathologic Myopia. New York, NY: Springer; 2013. https://doi.org/10.1007/978-1-4614-8338-0_11
  32. Sebag J, Balasz EA, Flood MT. The fibrous structure of the human vitreous. Ophthalmologia. 1984;88:62-73. 
  33. Sebag J. Age-related differences in the human vitreo-retinal interface. Ophthalmology. 1991;109:966-971.  https://doi.org/10.1001/archopht.1991.01080070078039
  34. Green WR, Sebag J. Vitreoretinal interface. In: Ryan SJ, ed. Retina. Elsevier, Mosby; 2006;1921-1991.
  35. Sebag J, Balazs EA. Human vitreous fibres and vitreoretinal disease. Trans Ophthalmol Soc UK. 1985;104:123-128. 
  36. Apple DJ, Rabb MF. Developmental anomalies. In: Apple DJ, Rabb MF, eds. Ocular pathology: clinical applications and selfassessment. 3rd ed. St Louis, Missouri: The C.V. Mosby Company; 1985;14-60. 
  37. Mann IC, ed. The vitreous and suspensory ligament of the lens. The development of the human eye. London: Cambridge University Press; 1928.
  38. Gamidov AA, Durzhinskaya MH, Makashova NV, Sakalova ED, Velieva IA. Persistent hyaloid artery in an adult (a case report). Vestnik oftal’mologii. 2020;136(4):214-218. (In Russ.). https://doi.org/10.17116/oftalma2020136042214
  39. Worst JGF. Extracapsular surgery in lens implantation (Binkhorst lecture). Part IV. Some anatomical and pathophysiological implications. J Am Intraocul Implant Soc. 1978;(4):7-14. 
  40. Worst JGF, Los LI. Cisternal Anatomy of the Vitreous. Amsterdam—York: Kugler Publications; 1995.
  41. Kishi S, Shimizu K. Posterior precortical vitreous pocket. Arch Ophthalmol. 1990;108(7):979-982.  https://doi.org/10.1001/archopht.1990.01070090081044
  42. Itakura H, Kishi S, Li D, Nitta K, Akiyama H. Vitreous changes in high myopia observed by swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55(3):1447-1452. https://doi.org/10.1167/iovs.13-13496
  43. Makhacheva ZA. Anatomiya steklovidnogo tela. Uchebnoe posobie dlya poslevuzovskogo professional’nogo obrazovaniya vrachei [Vitreous anatomy. Study guide for postgraduate professional education of doctors]. M.: Rusprint; 2006. (In Russ.).
  44. Schulz A, Wahl S, Rickmann A, et al. Age-Related Loss of Human Vitreal Viscoelasticity. Transl Vis Sci Technol. 2019;8(3):56.  https://doi.org/10.1167/tvst.8.3.56
  45. Balazs EA. Fine structure and function of ocular tissues. The vitreous. Int Ophthalmol Clin. 1973 Fall;13(3):169-187. 
  46. Los LI, van der Worp RJ, van Luyn MJA, Hooymans JMM. Age-Related Liquefaction of the Human Vitreous Body: LM and TEM Evaluation of the Role of Proteoglycans and Collagen. Invest Ophthalmol Vis Sci. 2003;44(7): 2828-2833. https://doi.org/10.1167/iovs.02-0588
  47. Kodama M, Matsuura T, Hara Y. Structure of vitreous body and its relationship with liquefaction. J Biomed Sci Engineer. 2013;6:739-745. 
  48. Seko Y, Shimokawa H, Pang J, Tokoro T. Disturbance of electrolyte balance in vitreous of chicks with form-deprivation myopia. Jpn J Ophthalmol. 2000;44:15-19.  https://doi.org/10.1016/S0021-5155(99)00177-X
  49. Foos RY, Wheeler NC. Vitreoretinal juncture. Synchysis senilis and posterior vitreous detachment. Ophthalmology. 1982;89(12):1502-1512. https://doi.org/10.1016/s0161-6420(82)34610-2
  50. Bishop PN, Holmes DF, Kadler KE, McLeod D, Bos KJ. Age-related changes on the surface of vitreous collagen fibrils. Invest Ophthalmol Vis Sci. 2004;45:1041-1046. https://doi.org/10.1167/iovs.03-1017
  51. Sebag J. Age-related changes in human vitreous structure. Graefes Arch Clin Exp Ophthalmol. 1987;225(2):89-93.  https://doi.org/10.1007/bf02160337
  52. Fincham GS, James S, Spickett C, Hollingshead M, Thrasivoulou C, Poulson AV, McNinch A, Richards A, Snead D, Limb GA, Snead MP. Posterior Vitreous Detachment and the Posterior Hyaloid Membrane. Ophthalmology. 2018;125(2):227-236.  https://doi.org/10.1016/j.ophtha.2017.08.001
  53. Ankamah E, Sebag J, Ng E, Nolan JM. Vitreous Antioxidants, Degeneration, and Vitreo-Retinopathy: Exploring the Links. Antioxidants (Basel). 2019;9(1):7.  https://doi.org/10.3390/antiox9010007
  54. Ermolaev AP, Novikov IA, Mel’nikova LI, Kotlyar KE. Comparative characteristics of the chemical composition of vitreal contents of cadaver eyes and eyes with terminal refractory glaucoma. Vestnik oftal’mologii. 2018;134(5):195-201. (In Russ.) https://doi.org/10.17116/oftalma2018134051195
  55. Worst JGF. Cisternal systems of the full developed vitreous body in the young adult. Trans. Ophthalmol Soc UK. 1977;97:550-554. 
  56. Harlap SI, Salihova AR, Miroshnik NV, Novikov IA, Avetisov SE. Structural features of the vitreous body in asteroid hyalosis. Vestnik oftal’mologii. 2020;136(4):26-36. (In Russ.). https://doi.org/10.17116/oftalma202013604126
  57. Balazs EA, Flood MT. Data first presented at 3rd International Congress for Eye Research, Osaka, Japan. In: Sebag J, ed. The vitreous. New York: Springer; 1989.
  58. Fujimoto JG, Brezinski ME, Tearney GJ, et al. Optical biopsy and imaging using optical coherence tomography. Nat Med. 1995;1(9):970-972.  https://doi.org/10.1038/nm0995-970
  59. Hayashi K, Sato T, Manabe SI, Hirata A. Sex-related differences in the progression of posterior vitreous detachment with age. Ophthalmol Retina. 2019; 3:237-243.  https://doi.org/10.1016/j.oret.2018.10.017
  60. Hayashi K, Manabe S, Hirata A, Yoshimura K. Posterior vitreous detachment in highly myopic patients. Invest Ophthalmol Vis Sci. 2020;61(4):33.  https://doi.org/10.1167/iovs.61.4.33
  61. Malyshev AV, Trubilin VN, Makkaeva SM, Yanchenko SV, Lysenko OI, Al’-Rashid ZZh. Modern ideas about changes in the structure of the vitreous body in the process of its natural and pathological involution. Fundamental’nye issledovaniya. 2013;9(3):523-529. (In Russ.).
  62. Oksala A. Ultrasonic findings in the vitreous body at various ages. Graefes Arch Clin Exp Ophthalmol. 1978;207:275-283.  https://doi.org/10.1007/BF00431165
  63. Gupta P, Yee KM, Garcia P, Rosen RB, Parikh J, Hageman GS, et al. Vitreoschisis in macular diseases. Br J Ophthalmol. 2011;95(3):376-380.  https://doi.org/10.1136/bjo.2009.175109
  64. Takahashi H, Tanaka N, Shinohara K, et al. Ultra-Widefield Optical Coherence Tomographic Imaging of Posterior Vitreous in Eyes With High Myopia. Am J Ophthalmol. 2019;206:102‐112.  https://doi.org/10.1016/j.ajo.2019.03.011
  65. Wei Q, Zhang T, Fan J, et al. Pathological myopia-induced antioxidative proteins in the vitreous humor. Ann Transl Med. 2020;8(5):193.  https://doi.org/10.21037/atm.2020.01.63
  66. Yue Y, Hsiao YW, Zhou JB. Association between MMP/TIMP Levels in the Aqueous Humor and Plasma with Axial Lengths in Myopia Patients. Biomed Res Int. 2020;2020:2961742. Epub 2020 Jun 10.  https://doi.org/10.1155/2020/2961742

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.