The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Avetisov S.E.

Krasnov Research Institute of Eye Disease;
I.M. Sechenov First Moscow State Medical University (Sechenov University)

Fisenko V.P.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Zhuravlev A.S.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Agaeva L.M.

Research Institute of Eye Diseases

Pharmaceutical aspects of medicated myopia control

Authors:

Avetisov S.E., Fisenko V.P., Zhuravlev A.S., Agaeva L.M.

More about the authors

Journal: Russian Annals of Ophthalmology. 2020;136(4): 310‑316

Read: 3330 times


To cite this article:

Avetisov SE, Fisenko VP, Zhuravlev AS, Agaeva LM. Pharmaceutical aspects of medicated myopia control. Russian Annals of Ophthalmology. 2020;136(4):310‑316. (In Russ.)
https://doi.org/10.17116/oftalma2020136042310

Recommended articles:
Correction of myopia with implantable collamer lenses. Russian Annals of Ophthalmology. 2025;(2):5-15
Microbiota of the ocular surface in children with myopia. Russian Annals of Ophthalmology. 2025;(3):5-12

References:

  1. Jung S, Lee J, Kakizaki H, Jee D. Prevalence of Myopia and its Association with Body Stature and Educational Level in 19-Year-Old Male Conscripts in Seoul, South Korea. Investigative Opthalmology and Visual Science. 2012; 53(9):5579. https://doi.org/10.1167/iovs.12-10106
  2. Lin L, Shih Y, Tsai C, Chen C, Lee L, Hung P, Hou P. Epidemiologic Study of Ocular Refraction among Schoolchildren in Taiwan in 1995. Optometry and Vision Science. 1999;76(5):275-281.  https://doi.org/10.1097/00006324-199905000-00013
  3. Yam J, Jiang Y, Tang S. Low-Concentration Atropine for Myopia Progression (LAMP) Study: A Randomized, Double-Blinded, Placebo-Controlled Trial of 0.05%, 0.025%, and 0.01% Atropine Eye Drops in Myopia Control. Ophthalmology. 2019;126(1):113-124.  https://doi.org/10.1016/j.ophtha.2018.05.029
  4. Huang J, Wen D, Wang Q, McAlinden C, Flitcroft I, Chen H, Saw SM, Chen H, Bao F, Zhao Y, Hu L, Li X, Gao R, Lu W, Du Y, Jinag Z, Yu A, Lian H, Jiang Q, Yu Y, Qu J. Efficacy Comparison of 16 Interventions for Myopia Control in Children. Ophthalmology. 2016;123(4):697-708.  https://doi.org/10.1016/j.ophtha.2015.11.010
  5. Woodman EC. Ocular changes associated with accommodation in myopes and emmetropes. 2015. Accessed June 3, 2019. https://eprints.qut.edu.au/82851/
  6. David R, Zangwill LM, Tessler Z, Yassur Y. The correlation between intraocular pressure and refractive status. Archives of Ophthalmology. 1985;103(12): 1812-1815. https://doi.org/10.1016/j.ophtha.2015.11.010
  7. Quinn GE, Berlin JA, Young TL, Ziylan S, Stone RA. Association of intraocular pressure and myopia in children. Ophthalmology. 1995;102(2): 180-185. 
  8. Edwards MH, Brown B. IOP in myopic children: the relationship between increases in IOP and the development of myopia. Ophthalmic and Physiological Optics. 1996;16(3):243-246.  https://doi.org/10.1016/0275-5408(95)00064-X
  9. El-Nimri NW, Wildsoet CF. Effects of Topical Latanoprost on Intraocular Pressure and Myopia Progression in Young Guinea Pigs. Investigative Ophthalmology and Visual Science. 2018;59(6):2644-2651. https://doi.org/10.1167/iovs.17-22890
  10. Liu Y, Wang Y, Lv H, Jiang X, Zhang M, Li X. α-adrenergic agonist brimonidine control of experimentally induced myopia in guinea pigs: A pilot study. Molecular Vision. 2017;23:785-798. 
  11. Lin H-J, Wei C-C, Chang C-Y, Chen TH, Hsu YA, Hsieh YC, Chen HJ, Wan L. Role of Chronic Inflammation in Myopia Progression: Clinical Evidence and Experimental Validation. EBioMedicine. 2016;10:269-281.  https://doi.org/10.1016/j.ebiom.2016.07.021
  12. Luu CD, Foo H, Crewther SG, Crewther DP. Effects of a non-steroidal (ketorolac tromethamine) and a steroidal (dexamethasone) anti-inflammatory drug on refractive state and ocular growth. Clinical and Experimental Ophthalmology. 2001;29(3):175-178. 
  13. Avetisov ES. Blizorukost’. M.: Medicina; 1999. (In Russ.).
  14. McBrien NA, Gentle A. Role of the sclera in the development and pathological complications of myopia. Progress in Retinal and Eye Research. 2003; 22(3):307-338.  https://doi.org/10.1016/s1350-9462(02)00063-0
  15. Flitcroft DI, Adams GGW, Robson AG, Holder GE. Retinal dysfunction and refractive errors: an electrophysiological study of children. British Journal of Ophthalmology. 2005;89(4):484-488.  https://doi.org/10.1136/bjo.2004.045328
  16. Trier K, Olsen EB, Kobayashi T, Ribel-Madsen SM. Biochemical and ultrastructural changes in rabbit sclera after treatment with 7-methylxanthine, theobromine, acetazolamide, or L-ornithine. British Journal of Ophthalmology. 1999;83(12):1370-1375. https://doi.org/10.1136/bjo.83.12.1370
  17. Trier K, Munk Ribel-Madsen S, Cui D, Brøgger Christensen S. Systemic 7-methylxanthine in retarding axial eye growth and myopia progression: a 36-month pilot study. Journal of Ocular Biology, Diseases, and Informatics. 2008;1(2-4):85-93.  https://doi.org/10.1007/s12177-008-9013-3
  18. Wollensak G, Iomdina E. Long-term biomechanical properties of rabbit sclera after collagen crosslinking using riboflavin and ultraviolet A (UVA). Acta Ophthalmologica. 2009;87(2):193-198.  https://doi.org/10.1111/j.1755-3768.2008.01229.x
  19. Li X, Wu M, Zhang L, Liu H, Zhang L, He J. Riboflavin and ultraviolet A irradiation for the prevention of progressive myopia in a guinea pig model. Experimental Eye Research. 2017;165:1-6.  https://doi.org/10.1016/j.exer.2017.08.019
  20. Garcia MB, Jha AK, Healy KE, Wildsoet CF. A Bioengineering Approach to Myopia Control Tested in a Guinea Pig Model. Investigative Ophthalmology and Visual Science. 2017;58(3):1875-1886. https://doi.org/10.1167/iovs.16-20694
  21. Shi J, Tan X, Yang J, et al. Influence of astaxanthin in refractive status and pathohistology of myopia models caused by concave lens of guinea pigs. Journal of Jilin University. Medicine Edition. 2017;43(5):932-936. 
  22. Avetisov SE, Fisenko VP, Zhuravlev AS, Avetisov KS. Atropine use for the prevention of myopia progression. Vestnik oftal’mologii. 2018;134(4):84-90. (In Russ.). https://doi.org/10.17116/oftalma2018134484-90
  23. Gong Q, Janowski M, Luo M, Wei H, Chen B, Yang G, Liu L. Efficacy and Adverse Effects of Atropine in Childhood Myopia: A Meta-analysis. JAMA Ophthalmology. 2017;135(6):624-630.  https://doi.org/10.1001/jamaophthalmol.2017.1091
  24. McBrien NA, Stell WK, Carr B. How does atropine exert its anti-myopia effects? Ophthalmic and Physiological Optics. 2013;33(3):373-378.  https://doi.org/10.1111/opo.12052
  25. Luft WA, Ming Y, Stell WK. Variable Effects of Previously Untested Muscarinic Receptor Antagonists on Experimental Myopia. Investigative Ophthalmology and Visual Science. 2003;44(3):1330-1338. https://doi.org/10.1167/iovs.02-0796
  26. Dong F, Zhi Z, Pan M, Xie R, Qin X, Lu R, Mao X, Chen JF, Willcox MD, Qu J, Zhou X. Inhibition of experimental myopia by a dopamine agonist: different effectiveness between form deprivation and hyperopic defocus in guinea pigs. Molecular Vision. 2011;17:2824-2834.
  27. Arumugam B, McBrien N. The D2 Antagonist Spiperone Prevents Muscarinic Antagonist Control of Experimentally-Induced Myopia in Chick. Investigative Ophthalmology and Visual Science. 2010;51(13):1195-1195.
  28. Schmid KL, Wildsoet CF. Inhibitory Effects of Apomorphine and Atropine and Their Combination on Myopia in Chicks. Optometry and Vision Science. 2004;81(2):137. 
  29. Ashby RS, Schaeffel F. The Effect of Bright Light on Lens Compensation in Chicks. Investigative Ophthalmology and Visual Science. 2010;51(10):5247-5253. https://doi.org/10.1167/iovs.09-4689
  30. Ashby R, Ohlendorf A, Schaeffel F. The Effect of Ambient Illuminance on the Development of Deprivation Myopia in Chicks. Investigative Ophthalmology and Visual Science. 2009;50(11):5348-5354. https://doi.org/10.1167/iovs.09-3419
  31. Jonas JB, Ohno-Matsui K, Jiang WJ, Panda-Jonas S. Bruch membrane and the mechanism of myopization: a new theory. Retina (Philadelphia, Pa). 2017;37(8):1428-1440. https://doi.org/10.1097/IAE.0000000000001464
  32. Stone R, Lin T, Laties A, Iuvone P. Retinal dopamine and form-deprivation myopia. Proceedings of the National Academy of Sciences. 1989;86(2): 704-706.  https://doi.org/10.1073/pnas.86.2.704
  33. Junfeng M, Shuangzhen L, Wenjuan Q, Fengyun L, Xiaoying W, Qian T. Levodopa Inhibits the Development of Form-Deprivation Myopia in Guinea Pigs. Optometry and Vision Science. 2010;87(1):53.  https://doi.org/10.1097/OPX.0b013e3181c12b3d
  34. Gao Q, Liu Q, Ma P, Zhong X, Wu J, Ge J. Effects of direct intravitreal dopamine injections on the development of lid-suture induced myopia in rabbits. Graefe’s Archive for Clinical and Experimental Ophthalmology. 2006; 244(10):1329-1335. https://doi.org/10.1007/s00417-006-0254-1
  35. Yan T, Xiong W, Huang F. Daily Injection But Not Continuous Infusion of Apomorphine Inhibits Form-Deprivation Myopia in Mice. Investigative Opthalmology and Visual Science. 2015;56(4):2475. https://doi.org/10.1167/iovs.13-12361
  36. Leguire LE, Rogers GL, Bremer DL, Walson PD, McGregor ML. Levodopa/carbidopa for childhood amblyopia. Investigative Ophthalmology and Visual Science. 1993;34(11):3090-3095.
  37. Pediatric Eye Disease Investigator Group, Repka MX, Kraker RT, Dean TW, Beck RW, Siatkowski RM, Holmes JM, Beauchamp CL, Golden RP, Miller AM, Verderber LC, Wallace DK. A Randomized Trial of Levodopa as Treatment for Residual Amblyopia in Older Children. Ophthalmology. 2015;122(5): 874-881.  https://doi.org/10.1016/j.ophtha.2015.01.002
  38. Repka MX, Kraker RT, Beck RW, Atkinson CS, Bacal DA, Bremer DL, Davis PL, Gearinger MD, Glaser SR, Hoover DL, Laby DM, Morrison DG, Rogers DL, Sala NA, Suh DW, Wheeler MB; Pediatric Eye Disease Investigator Group. Pilot Study of Levodopa Dose as Treatment for Residual Amblyopia in Children Aged 8 Years to Younger than 18 Years. Archives of Ophthalmology. 2010;128(9):1215-1217. https://doi.org/10.1001/archophthalmol.2010.178
  39. Jeffers A, Benotsch EG, Koester S. Misuse of prescription stimulants for weight loss, psychosocial variables, and eating disordered behaviors. Appetite. 2013;65:8-13.  https://doi.org/10.1016/j.appet.2013.01.008
  40. Li X-X, Schaeffel F, Kohler K, Zrenner E. Dose-dependent effects of 6-hydroxy dopamine on deprivation myopia, electroretinograms, and dopaminergic amacrine cells in chickens. Visual Neuroscience. 1992;9(5):483-492.  https://doi.org/10.1017/S0952523800011287
  41. Schaeffel F, Bartmann M, Hagel G, Zrenner E. Studies on the role of the retinal dopamine/melatonin system in experimental refractive errors in chickens. Vision Research. 1995;35(9):1247-1264. https://doi.org/10.1016/0042-6989(94)00221-7
  42. Cohen Y, Peleg E, Belkin M, Polat U, Solomon AS. Ambient illuminance, retinal dopamine release and refractive development in chicks. Experimental Eye Research. 2012;103:33-40.  https://doi.org/10.1016/j.exer.2012.08.004
  43. Guggenheim JA, Northstone K, McMahon G, et al. Time Outdoors and Physical Activity as Predictors of Incident Myopia in Childhood: A Prospective Cohort Study. Investigative Ophthalmology and Visual Science. 2012;53(6): 2856-2865. https://doi.org/10.1167/iovs.11-9091
  44. Backhouse S, Collins AV, Phillips JR. Influence of periodic vs continuous daily bright light exposure on development of experimental myopia in the chick. Ophthalmic and Physiological Optics. 2013;33(5):563-572.  https://doi.org/10.1111/opo.12069
  45. Smith EL, Hung L-F, Huang J. Protective Effects of High Ambient Lighting on the Development of Form-Deprivation Myopia in Rhesus Monkeys. Investigative Ophthalmology and Visual Science. 2012;53(1):421-428.  https://doi.org/10.1167/iovs.11-8652
  46. Nickla DL, Totonelly K. Dopamine antagonists and brief vision distinguish lens-induced- and form-deprivation-induced myopia. Experimental Eye Research. 2011;93(5):782-785.  https://doi.org/10.1016/j.exer.2011.08.001
  47. McCarthy CS, Megaw P, Devadas M, Morgan IG. Dopaminergic agents affect the ability of brief periods of normal vision to prevent form-deprivation myopia. Experimental Eye Research. 2007;84(1):100-107.  https://doi.org/10.1016/j.exer.2006.09.018
  48. Nickla DL, Totonelly K, Dhillon B. Dopaminergic agonists that result in ocular growth inhibition also elicit transient increases in choroidal thickness in chicks. Experimental Eye Research. 2010;91(5):715-720.  https://doi.org/10.1016/j.exer.2010.08.021
  49. Zhou X, Pardue MT, Iuvone PM, Qu J. Dopamine signaling and myopia development: What are the key challenges. Progress in Retinal and Eye Research. 2017;61:60-71.  https://doi.org/10.1016/j.preteyeres.2017.06.003
  50. Stone RA, Lin T, Laties AM. Muscarinic antagonist effects on experimental chick myopia. Experimental Eye Research. 1991;52(6):755-758.  https://doi.org/10.1016/0014-4835(91)90027-C
  51. Cottriall CL, McBrien NA. The M1 muscarinic antagonist pirenzepine reduces myopia and eye enlargement in the tree shrew. Investigative Ophthalmology and Visual Science. 1996;37(7):1368-1379.
  52. Siatkowski RM, Cotter S, Miller JM, Scher CA, Crockett RS, Novack GD; US Pirenzepine Study Group. Safety and efficacy of 2% pirenzepine ophthalmic gel in children with myopia: a 1-year, multicenter, double-masked, placebo-controlled parallel study. Archives of Ophthalmology. 2004;122(11): 1667-1674. https://doi.org/10.1001/archopht.122.11.1667
  53. Tan DTH, Lam DS, Chua WH, Shu-Ping DF, Crockett RS, Asian Pirenzepine Study Group. One-year multicenter, double-masked, placebo-controlled, parallel safety and efficacy study of 2% pirenzepine ophthalmic gel in children with myopia. Ophthalmology. 2005;112(1):84-91.  https://doi.org/10.1016/j.ophtha.2004.06.038
  54. Tang R, Tan J, Deng Z, Zhao S, Miao Y, Zhang W. Insulin-like growth factor-2 antisense oligonucleotides inhibits myopia by expression blocking of retinal insulin-like growth factor-2 in guinea pig. Clinical and Experimental Ophthalmology. 2012;40(5):503-511.  https://doi.org/10.1111/j.1442-9071.2011.02683.x
  55. Chun RKM, Shan SW, Lam TC, Wong CL, Li KK, Do CW, To CH. Cyclic Adenosine Monophosphate Activates Retinal Apolipoprotein A1 Expression and Inhibits Myopic Eye Growth. Investigative Ophthalmology and Visual Science. 2015;56(13):8151-8157. https://doi.org/10.1167/iovs.14-14233

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.