The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Tarutta E.P.

Helmholtz National Medical Research Center of Eye Diseases

Milash S.V.

Helmholtz National Medical Research Center of Eye Diseases

Markosyan G.A.

Helmholtz National Medical Research Center of Eye Diseases

Tarasova N.A.

Helmholtz National Medical Research Center of Eye Diseases

Choroid and optical defocus

Authors:

Tarutta E.P., Milash S.V., Markosyan G.A., Tarasova N.A.

More about the authors

Journal: Russian Annals of Ophthalmology. 2020;136(4): 124‑129

Read: 4201 times


To cite this article:

Tarutta EP, Milash SV, Markosyan GA, Tarasova NA. Choroid and optical defocus. Russian Annals of Ophthalmology. 2020;136(4):124‑129. (In Russ.)
https://doi.org/10.17116/oftalma2020136041124

Recommended articles:
Peri­papillary pachychoroid syndrome. Russian Annals of Ophthalmology. 2024;(6):138-144
Correction of myopia with implantable collamer lenses. Russian Annals of Ophthalmology. 2025;(2):5-15
Microbiota of the ocular surface in children with myopia. Russian Annals of Ophthalmology. 2025;(3):5-12

References:

  1. Nickla DL, Wallman J. The Multifunctional choroid. Progress in Retinal and eye Research. 2010;29(2):144-168.  https://doi.org/10.1016/j.preteyeres.2009.12.002
  2. Astakhov YuS, Belekhova SG, Dal’ NYu. The thickness of the choroid in normal and age-related macular degeneration. Oftal’mologicheskie vedomosti. 2014;7(1):4-7. (In Russ.).
  3. Fujiwara T, Imamura Y, Margolis R, Slakter JS, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in highly myopic eyes. Am J Ophthalmol. 2009;148(3):445-450.  https://doi.org/10.1016/j.ajo.2009.04.029
  4. Astakhov YuS, Belekhova SG. The thickness of the choroid in myopia of various degrees. Oftal’mologicheskie vedomosti. 2013;6(4):34-38. (In Russ.).
  5. Imamura Y, Fujiwara T, Margolis RON, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29(10):1469-1473. https://doi.org/10.1097/IAE.0b013e3181be0a83
  6. Ünsal E, Eltutar K, Zirtiloğlu S, Dinçer N, Özdoğan Erkul S, Güngel H. Choroidal thickness in patients with diabetic retinopathy. Clin Ophthalmol. 2014;8:637-642.  https://doi.org/10.2147/OPTH.S59395
  7. Laviers H, Zambarakji H. Enhanced depth imaging-OCT of the choroid: a review of the current literature. Graefes Arch Clin Exp Ophthalmol. 2014; 252(12):1871-1883. https://doi.org/10.1007/s00417-014-2840-y
  8. Wallman J, Winawer J. Homeostasis of eye growth and the question of myopia. Neuron. 2004;43(4):447-468.  https://doi.org/10.1016/j.neuron.2004.08.008
  9. Summers JA. The choroid as a sclera growth regulator. Exp Eye Res. 2013; 114:120-127.  https://doi.org/10.1016/j.exer.2013.03.008
  10. Wallman J, Wildsoet C, Xu A, Gottlieb MD, Nickla DL, Marran L, Krebs W, Christensen AM. Moving the retina: choroidal modulation of refractive state. Vision Res. 1995;35:37-50.  https://doi.org/10.1016/0042-6989(94)E0049-Q
  11. Wildsoet C, Wallman J. Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vision Res. 1995;35:1175-1194. https://doi.org/10.1016/0042-6989(94)00233-C
  12. Zhu X, Park TW, Winawer J, et al. In a matter of minutes, the eye can know which way to grow. Invest Ophthalmol Vis Sci. 2005;46:2238-2241. https://doi.org/10.1167/iovs.04-0956
  13. Siegwart JT, Jr, Norton TT. The susceptible period for deprivation-induced myopia in tree shrew. Vision Res. 1998;38:3505-3515. https://doi.org/10.1016/S0042-6989(98)00053-4
  14. Howlett M, McFadden S. Spectacle lens compensation in the pigmented guinea pig. Vision Res. 2009;49:219-227.  https://doi.org/10.1016/j.visres.2008.10.008
  15. Troilo D, Nickla D, Wildsoet C. Choroidal thickness changes during altered eye growth and refractive state in a primate. Invest Ophthalmol Vis Sci. 2000; 41:1249-1258.
  16. Hung L-F, Wallman J, Smith E. Vision-dependent changes in the choroidal thickness of Macaque monkeys. Invest Ophthalmol Vis Sci. 2000;41:1259-1269.
  17. May CA. Non-vascular smooth muscle cells in the human choroid: distribution, development and further characterization. J Anat. 2005;207(4):381-390.  https://doi.org/10.1111/j.1469-7580.2005.00460.x
  18. Harper AR, Summers JA. The Dynamic sclera: extracellular matrix remodeling in normal ocular growth and myopia development. Exp Eye Res. 2015; 133:100-111.  https://doi.org/10.1016/j.exer.2014.07.015
  19. Marzani D, Wallman J. Growth of the two layers of the chick sclera is modulated reciprocally by visual conditions. Invest Ophthalmol Vis Sci. 1997; 38:1726-1739.
  20. Rada JA, Palmer L. Choroidal regulation of scleral glycosaminoglycan synthesis during recovery from induced myopia. Invest Ophthalmol Vis Sci. 2007;48:2957-2966. https://doi.org/10.1167/iovs.06-1051
  21. Mertz JR, Wallman J. Choroidal retinoic acid synthesis: a possible mediator between refractive error and compensatory eye growth. Exp Eye Res. 2000;70:519-527.  https://doi.org/10.1006/exer.1999.0813
  22. Summers Rada JA, Hollaway LR. Regulation of the biphasic decline in scleral proteoglycan synthesis during the recovery from induced myopia. Exp Eye Res. 2011;92:394-400.  https://doi.org/10.1016/j.exer.2011.02.011
  23. Rada JA, Hollaway LR, Lam W, Li N, Napoli JL. Identification of RALDH2 as a visually regulated retinoic acid synthesizing enzyme in the chick choroid. Invest Ophthalmol Vis Sci. 2012;53:1649-1662. https://doi.org/10.1167/iovs.11-8444
  24. McFadden SA, Howlett MH, Mertz JR. Retinoic acid signals the direction of ocular elongation in the guinea pig eye. Vision Res. 2004;44:643-653.  https://doi.org/10.1016/j.visres.2003.11.002
  25. Troilo D, Nickla DL, Mertz JR, Summers Rada JA. Change in the synthesis rates of ocular retinoic acid and scleral glycosaminoglycan during experimentally altered eye growth in marmosets. Invest Ophthalmol Vis Sci. 2006; 47:1768-1777. https://doi.org/10.1167/iovs.05-0298
  26. Harper AR, Wiechmann AF, Moiseyev G, Ma J-X, Summers JA. Identification of active retinaldehyde dehydrogenase isoforms in the postnatal human eye. PLoS One. 2015;10(3):e0122008. https://doi.org/10.1371/journal.pone.0122008
  27. Read SA, Collins MJ, Sander B. Human optical axial length and defocus. Invest Ophthalmol Vis Sci. 2010;51:6262-6269. https://doi.org/10.1167/iovs.10-5457
  28. Chiang ST, Phillips JR, Backhouse S. Effect of retinal image defocus on the thickness of the human choroid. Ophthalmic Physiol Opt. 2015;35:405-413.  https://doi.org/10.1111/opo.12218
  29. Wang D, Chun RKM, Liu M, et al. Optical defocus rapidly changes choroidal thickness in schoolchildren. PLoS One. 2016;11(8):e0161535. https://doi.org/10.1371/journal.pone.0161535
  30. Chakraborty R, Read SA, Collins MJ. Monocular myopic defocus and daily changes in axial length and choroidal thickness of human eyes. Exp Eye Res. 2012;103:47-54.  https://doi.org/10.1016/j.exer.2012.08.002
  31. Chakraborty R, Read SA, Collins MJ. Hyperopic defocus and diurnal changes in human choroid and axial length. Optom Vis Sci. 2013;90(11):1187-1198. https://doi.org/10.1097/OPX.0000000000000035
  32. Chiang ST, Phillips JR. Effect of atropine eye drops on choroidal thinning induced by hyperopic retinal defocus. J Ophthalmol. 2018;8528315. https://doi.org/10.1155/2018/8528315
  33. Sander BP, Collins MJ, Read SA. The interaction between homatropine and optical blur on choroidal thickness. Ophthalmic Physiol Opt. 2018;38: 257-265.  https://doi.org/10.1111/opo.12450
  34. Nickla DL, Zhu X, Wallman J. Effects of muscarinic agents on chick choroids in intact eyes and eyecups: evidence for a muscarinic mechanism in choroidal thinning. Ophthalmic Physiol Opt. 2013;33:245-256.  https://doi.org/10.1111/opo.12054
  35. McBrien NA, Moghaddam HO, Reeder AP. Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism. Invest Ophthalmol Vis Sci. 1993;34(1):205-215. 
  36. Diether S, Schaeffel F, Lambrou GN, et al. Effects of intravitreally and intraperitonally injected atropine on two types of experimental myopia in chicken. Exp Eye Res. 2007;84:266-274.  https://doi.org/10.1016/j.exer.2006.09.019
  37. Chua WH, Balakrishnan V, Chan YH, Tong L, Ling Y, Quah BL. Atropine for the treatment of childhood myopia. Ophthalmol. 2006;113:228-291.  https://doi.org/10.1016/j.ophtha.2006.05.062
  38. Chia A, Lu QS, Tan D. Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01% eyedrops. Ophthalmology. 2016;123(2):391-399.  https://doi.org/10.1016/j.ophtha.2015.07.004
  39. Galvis V, Tello A, Parra MM, et al. Topical atropine in the control of myopia. Medical Hypothesis, Discovery and Innovation in Ophthalmology. 2016; 5(3):78-88. 
  40. Zhang Z, Zhou Y, Xie Z, et al. The effect of topical atropine on the choroidal thickness of healthy children. Sci Rep. 2016;6:34936. https://doi.org/10.1038/srep34936
  41. Sander BP, Collins MJ, Read SA. The effect of topical adrenergic and anticholinergic agents on the choroidal thickness of young healthy adults. Exp Eye Res. 2014;128:181-189.  https://doi.org/10.1016/j.exer.2014.10.003
  42. Li Z, Zeng J, Jin W, Long W, Lan W, Yang X. Time-course of changes in choroidal thickness after complete mydriasis induced by compound tropicamide in children. PLoS One. 2016;11(9):e0162468. https://doi.org/10.1371/journal.pone.0162468
  43. Yuvaci I, Pangal E, Yuvaci S, et al. An evaluation of effects of different mydriatics on choroidal thickness by examining anterior chamber parameters: the scheimpflug imaging and enhanced depth imaging-OCT study. J Ophthalmol. 2015;981274. https://doi.org/10.1155/2015/981274
  44. Öner V, Bulut A, Öter K. The effect of topical anti-muscarinic agents on subfoveal choroidal thickness in healthy adults. Eye (Lond). 2016;30(7):925-928.  https://doi.org/10.1038/eye.2016.61
  45. Tarutta EP, Harutyunyan SG, Milash SV, Khandzhyan AT, Khodzhabekyan NV. Change in the ophthalmobiometric parameters in myopia and hyperopia under the influence of cycloplegia. Oftalmologiya. 2018;15(1):58-63. (In Russ.). https://doi.org/10.18008/1816-5095-2018-1-58-63
  46. Tarutta EP, Verzhanskaia TYu. Possible mechanisms of orthokeratological contact lenses inhibiting impact on myopia progression. Rossijskij oftal’mologicheskij zhurnal. 2008;2:26-30. (In Russ.).
  47. Gardner DJ, Walline JJ, Mutti DO. Choroidal thickness and peripheral myopic defocus during orthokeratology. Optom Vis Sci. 2015;92(5):579-588.  https://doi.org/10.1097/OPX.0000000000000573
  48. Chen Z, Xue F, Zhou J, Qu X, Zhou X. Effects of orthokeratology on choroidal thickness and axial length. Optom Vis Sci. 2016;93(9):1064-1071. https://doi.org/10.1097/OPX.0000000000000894
  49. Li Z, Cui D, Hu Y, Ao S, Zeng J, Yang X. Choroidal thickness and axial length changes in myopic children treated with orthokeratology. Contact Lens and Anterior Eye. 2017;40(6):417-423.  https://doi.org/10.1016/j.clae.2017.09.010
  50. Wei WB, Xu L, Jonas JB, et al. Subfoveal choroidal thickness: the beijing eye study. Ophthalmology. 2013;120:175-180.  https://doi.org/10.1371/journal.pone.0179579
  51. Read SA, Collins MJ, Vincent SJ, et al. Choroidal thickness in childhood. Invest Ophthalmol Vis Sci. 2013;54:3586-3593. https://doi.org/10.1167/iovs.13-11732
  52. Tarutta EP, Markossian GA, Sianosyan AA, Milash SV. Choroidal thickness in varied types of refraction and its changes after sclera-strengthening surgeries. Rossijskij oftal’mologicheskij zhurnal. 2017;10(4):48-53. (In Russ.). https://doi.org/10.21516/2072-0076-2017-10-4-48-53
  53. Xiong S, He X, Deng J, Lv M, Jin J, Sun S, et al. Choroidal thickness in 3001 Chinese children aged 6 to 19 years using swept-source OCT. Sci Rep. 2017;7: 450-459.  https://doi.org/10.1038/srep45059
  54. He X, Jin P, Zou H, et al. Choroidal thickness in healthy Chinese children aged 6 to 12: the shanghai children eye study. Retina. 2017;37:368-375.  https://doi.org/10.1097/IAE.0000000000001168
  55. Read SA, Alonso-Caneiro D, Vincent SJ, Collins MJ. Longitudinal changes in choroidal thickness and eye growth in childhood. Invest Ophthalmol Vis Sci. 2015;56:3103-3112. https://doi.org/10.1167/iovs.15-16446
  56. Fontaine M, Gaucher D, Sauer A, Speeg-Schatz C. Choroidal thickness and ametropia in children: a longitudinal study. European Journal of Ophthalmology. 2017;27(6):730-734.  https://doi.org/10.5301/ejo.5000965
  57. Nickla DL, Kristen Totonelly MS. Choroidal thickness predicts ocular growth in normal chicks but not in eyes with experimentally altered growth. Clin Exp Optom. 2015;98:564-570.  https://doi.org/10.1111/cxo.12317

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.