The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Subbot A.M.

FGBU "NII glaznykh bolezneĭ" RAMN, Moskva

Kasparova Evg A.

Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021

Kasparova Evg A.

Research Institute of Eye Diseases, 11 A, B Rossolimo St., Moscow, Russian Federation, 119021

Review of approaches to cell therapy in ophthalmology

Authors:

Subbot A.M., Kasparova Evg A., Kasparova Evg A.

More about the authors

Journal: Russian Annals of Ophthalmology. 2015;131(5): 74‑81

Read: 1547 times


To cite this article:

Subbot AM, Kasparova Evg A, Kasparova Evg A. Review of approaches to cell therapy in ophthalmology. Russian Annals of Ophthalmology. 2015;131(5):74‑81. (In Russ.)
https://doi.org/10.17116/oftalma2015131574-81

Recommended articles:
Standardized and scalable method for stro­mal-vascular fraction harvesting from adipose tissue. Rege­nerative Biotechnologies, Preventive, Digi­tal and Predictive Medi­cine. 2024;(4):76-81
Portopulmonary hype­rtension. Journal of Respiratory Medi­cine. 2025;(2):39-44
Changes in diagnosis-related group payment model in the Russian Fede­ration in 2025. Medi­cal Technologies. Asse­ssment and Choice. 2025;(2):18-30

References:

  1. http://www.rosminzdrav.ru/documents/6472-proekt-federalnogo-zakona-ot-18-yanvarya-2013-g
  2. Mason C. Cell therapy and regenerative medicine glossary. Regen Med. 2012;7(3 Suppl):S1-S124. doi:10.2217/rme.12.38
  3. Fda Guidance. Available at: http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/CellularandGeneTherapy/ucm376136.htm.
  4. Novik A, Ivanov R. Cell therapy. Moskow: «Meditsinskoe informatsionnoe agentstvo»; 2008. (In Russ.)
  5. Dameshek W. Bone marrow transplantation; a present-day challenge. Blood. 1957;12(4):321-323.
  6. Maximow A. Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere. Originally in: Folia Haematologica 8.1909, 125-134. Republished in: Cell Ther Transplant. 2009,1:e.000040.01. Available at: http://www.ctt-journal.com/1-3-en-maximow-1909-translation.html?&L=1 doi:10.3205/ctt-2008-en-000040.01
  7. Li MD, Atkins H, Bubela T. The global landscape of stem cell clinical trials. Regen Med. 2014;9(1):27-39. doi:10.2217/rme.13.80
  8. Pinaev G. Compliance with regulatory actual process of creation and application of biomedical cell technologies. Vestnik Biotehnologii i Fiziko-himicheskoj Biologii im. Yu.A. Ovhinnikova. 2012;8(3):61-64. (In Russ.)
  9. Günes C, Rudolph KL. The Role of Telomeres in Stem Cells and Cancer. Cell. 2013;152(3):390-393. doi:10.1016/j.cell.2013.01.010
  10. Ceafalan LC, Popescu BO, Hinescu ME. Cellular Players in Skeletal Muscle Regeneration. Biomed Res Int. [Internet]. 2014 [cited 2014 May 7];2014. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3980925/ doi:10.1155/2014/957014
  11. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8(9):726-736. doi:10.1038/nri2395
  12. Blanpain C, Fuchs E. Epidermal stem cells of the skin. Annu Rev Cell Dev Biol. 2006;22:339-373. doi:10.1146/annurev.cellbio.22.010305.104357
  13. Temple S. The development of neural stem cells. Nature. 2001;414(6859):112-117. doi:10.1038/35102174
  14. Chenhui W, Pei W, Pei S, Rongwen X. Stem Cell Niche. Regenerative Medicine: From Protocol to Patient. Springer Science & Business Media; 2013:79-106.
  15. Vladimirskaya E, Rumyantsev S, Mayorova O. Biological basis and prospects of stem cell therapy. Moskow: Medpraktika-М; 2005. (In Russ.)
  16. Chencov Ju. Introduction to the cell biology. Moskow: Akademkniga; 2004. (In Russ.)
  17. Ng KW, Abraham MC, Leong DTW, Morris C, Schantz J-T. Primary culture of specific cell types and the establishment of cell lines. Animal cell culture: essential methods. [Internet]. John Wiley & Sons, Ltd; 2011:205-230. doi:10.1002/9780470669815.ch7
  18. Scheinberg DA, Jurcic JG. Treatment of leukemia and lymphoma. Academic Press; 2004.
  19. Dib N, Taylor DA, Diethrich EB. Stem cell therapy and tissue engineering for cardiovascular repair: from basic research to clinical applications. Springer Science & Business Media; 2006.
  20. Hyakusoku H, Orgill DP, Téot L, Pribaz JJ, Ogawa R. Color atlas of burn reconstructive surgery. Springer Science & Business Media; 2010.
  21. Kotenko K, Eremin I, Moroz B, Bushmanov A, Nadezhina N, Galstjan I, Grinakovskaja O, Aksenenko A, Deshevoj Yu, Lebedev V, Slobodina T, Zhgutov Yu, Lauk-Dubickij S, Eremin P. Cell technologies in the treatment of radiation burns: experience Burnasyan Federal Medical Biophysical Centre, Kletochnaya transplantologiya i tkanevaya inzheneriya. 2012;7(2):97-102 (In Russ.)
  22. Grier EV. Neural stem cell research. Nova Publishers; 2006.
  23. Efrat S. Stem cell therapy for diabetes. Springer Science & Business Media; 2009.
  24. Rolauffs B, Badke A, Weise K, Grodzinsky AJ, Aicher WK. Stem cells and cartilage repair. In: Gorodetsky R, Schafer R, eds. Stem cell-based tissue repair. Royal Society of Chemistry; 2011:248-272.
  25. Zorin V, Cherkasov V, Zorina A, Deev R. The Characteristics of world market cell technologies. Kletochnaya Transplantologiya i Tkanevaya Inzheneriya. 2010;5(3):96-115. (In Russ.)
  26. Tang Q, Chen Q, Lai X, Liu S, Chen Y, Zheng Z, Xie Q, Maldonado M., Cai Z, Qin S, Ho G, Ma L. Malignant transformation potentials of human umbilical cord mesenchymal stem cells both spontaneously and via 3-methycholanthrene induction. PLoS ONE. 2013;8(12):e81844. doi:10.1371/journal.pone.0081844
  27. Røsland GV, Svendsen A, Torsvik A, Sobala E, McCormack E, Immervoll H, Mysliwietz J, Tonn J-C, Goldbrunner R, Lønning PE, Bjerkvig R, Schichor C. Long-term cultures of bone marrow-derived human mesenchymal stem cells frequently undergo spontaneous malignant transformation. Cancer Res. 2009;69(13):5331-5339. doi:10.1158/0008-5472.CAN-08-4630
  28. Peterson SE, Loring JF. Genomic Instability in Pluripotent Stem Cells: Implications for Clinical Applications. J Biol Chem. 2014;289(8):4578-4584. doi:10.1074/jbc.R113.516419
  29. From the Editor. Kletochnaya Transplantologiya i Tkanevaya Inzheneriya. 2010;5(3):1-12. (In Russ.)
  30. Pestrikova A. Development of cell technologies in the Russian Federation. Vlast'' Zakona. 2011;1(5):47-53. (In Russ.)
  31. Blenkinsop TA, Corneo B, Temple S, Stern JH. Ophthalmologic stem cell transplantation therapies. Regen Med. 2012;7(6 Suppl):32-39. doi:10.2217/rme.12.77
  32. Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol. 2003;3(11):879-889. doi:10.1038/nri1224
  33. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. doi:10.1016/j.cell.2006.07.024
  34. Jin Z-B, Okamoto S, Osakada F, Homma K, Assawachananont J, Hirami Y, Iwata T, Takahashi M. Modeling retinal degeneration using patient-specific induced pluripotent stem cells. PLoS ONE. 2011;6(2):e17084. doi:10.1371/journal.pone.0017084
  35. Sinnecker D, Laugwitz K-L, Moretti A. Induced pluripotent stem cell-derived cardiomyocytes for drug development and toxicity testing. Pharmacology & Therapeutics [Internet]. [cited 2014 Jun 9]; Available from: http://www.sciencedirect.com/science/article/pii/S0163725814000655 doi:10.1016/j.pharmthera.2014.03.004
  36. Lamba DA, McUsic A, Hirata RK, Wang P-R, Russell D, Reh TA. Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One [Internet]. 2010 Jan 20 [cited 2014 Jun 9];5(1). Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808350 doi:10.1371/journal.pone.0008763
  37. Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, Clegg DO. Derivation of functional retinal pigmented epithelium from induced pluripotent stem cells. Stem Cells. 2009;27(10):2427-2433. doi:10.1002/stem.189
  38. Qiu X, Yang J, Liu T, Jiang Y, Le Q, Lu Y. Efficient generation of lens progenitor cells from cataract patient-specific induced pluripotent stem cells. PLoS ONE. 2012;7(3):e32612. doi:10.1371/journal.pone.0032612
  39. Shalom-Feuerstein R, Serror L, Aberdam E, Muller F-J, van Bokhoven H, Wiman KG, Zhou H, Aberdam D, Petit I. Impaired epithelial differentiation of induced pluripotent stem cells from ectodermal dysplasia-related patients is rescued by the small compound APR-246/PRIMA-1MET. Proc Natl Acad Sci USA. 2013;110(6):2152-2156. doi:10.1073/pnas.1201753109
  40. Chien Y, Liao Y-W, Liu D-M, Lin H-L, Chen S-J, Chen H-L, Peng C-H, Liang C-M, Mou C-Y, Chiou S-H Corneal repair by human corneal keratocyte-reprogrammed iPSCs and amphiphatic carboxymethyl-hexanoyl chitosan hydrogel. Biomaterials. 2012;33(32):8003-8016. doi:10.1016/j.biomaterials.2012.07.029
  41. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260(5110):920-926. doi:10.1126/science.8493529
  42. Chang H-I, Wang Y. Cell responses to surface and architecture of tissue engineering scaffolds. In: Eberli D, ed. Regenerative medicine and tissue engineering - cells and biomaterials. InTech; 2011. Available at: http://www.intechopen.com/books/regenerative-medicine-and-tissue-engineering-cells-and-biomaterials/cell-responses-to-surface-and-architecture-of-tissue-engineering-scaffolds. doi:10.5772/21983
  43. Chirila TV. An introduction to ophthalmic biomaterials and their application through tissue engineering and regenerative medicine. In: Chirila T, ed. Biomaterials and Regenerative Medicine in Ophthalmology. Woodhead Publishing; 2010:1-13. Available at: http://www.sciencedirect.com/science/article/pii/B9781845694432500017. doi:10.1533/9781845697433.1
  44. Williams DJ, Sebastine IM. Tissue engineering and regenerative medicine: manufacturing challenges. IEE Proc Nanobiotechnol. 2005;152(6):207-210. doi:10.1049/ip-nbt:20050001
  45. Kelm JM, Fussenegger M. Scaffold-free cell delivery for use in regenerative medicine. Adv Drug Deliv Rev. 2010;62(7-8):753-764. doi:10.1016/j.addr.2010.02.003
  46. Gnecchi M, Zhang Z, Ni A, Dzau VJ. Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res. 2008;103(11):1204-1219. doi:10.1161/CIRCRESAHA.108.176826
  47. Baraniak PR, McDevitt TC. Stem cell paracrine actions and tissue regeneration. Regen Med. 2010;5(1):121-143. doi:10.2217/rme.09.74
  48. Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, Pluchino S. The stem cell secretome and its role in brain repair. Biochimie. 2013;95(12):2271-2285. doi:10.1016/j.biochi.2013.06.020
  49. Jia Z, Jiao C, Zhao S, Li X, Ren X, Zhang L, Han ZC, Zhang X. Immunomodulatory effects of mesenchymal stem cells in a rat corneal allograft rejection model. Exp Eye Res. 2012;102:44-49. doi:10.1016/j.exer.2012.06.008
  50. Oyama Y, Burt RK, Thirkill C, Hanna E, Merrill K, Keltner J. A case of autoimmune-related retinopathy and optic neuropathy syndrome treated by autologous nonmyeloablative hematopoietic stem cell transplantation. J Neuroophthalmol. 2009;29(1):43-49. doi:10.1097/WNO.0b013e318199becf
  51. Libman E, Shakhova E. Blindness and disability due to pathology of the organ of vision in Russia. Vestnik Oftalmolmologii. 2006;122(1):35-37. (In Russ.)
  52. Nita M, Strzalka-Mrozik B, Grzybowski A, Romaniuk W, Mazurek U. Ophthalmic transplantology: anterior segment of the eye. Part I. Med Sci Monit. 2012;18(5):RA64-RA72. doi:10.12659/MSM.882723
  53. Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol. 1986;103(1):49-62. doi:10.1083/jcb.103.1.49
  54. Ahmad S. Concise review: limbal stem cell deficiency, dysfunction, and distress. Stem Cells Trans Med. 2012;1(2):110-115. doi:10.5966/sctm.2011-0037
  55. Krachmer JH, Mannis MJ, Holland EJ. Cornea. Vol. 2. St. Louis, Mo.: Elsevier Mosby; 2005.
  56. Pellegrini G, Traverso CE, Franzi AT, Zingirian M, Cancedda R, De Luca M. Long-term restoration of damaged corneal surfaces with autologous cultivated corneal epithelium. Lancet. 1997;349(9057):990-993. doi:10.1016/S0140-6736(96)11188-0
  57. Rama P, Matuska S, Paganoni G, Spinelli A, De Luca M, Pellegrini G. Limbal stem-cell therapy and long-term corneal regeneration. N Engl J Med. 2010;363(2):147-155. doi:10.1056/NEJMoa0905955
  58. Sangwan VS, Jain R, Basu S, Bagadi AB, Sureka S, Mariappan I, MacNeil S. Transforming ocular surface stem cell research into successful clinical practice. Indian J Ophthalmol. 2014;62(1):29-40. doi:10.4103/0301-4738.126173
  59. Schwab IR, Reyes M, Isseroff RR. Successful transplantation of bioengineered tissue replacements in patients with ocular surface disease. Cornea. 2000;19(4):421-426. doi:10.1016/S0002-9394(00)00747-9
  60. Sharma S, Tandon R, Mohanty S, Kashyap S, Vanathi M. Phenotypic evaluation of severely damaged ocular surface after reconstruction by cultured limbal epithelial cell transplantation. Ophthalmic Res. 2013;50(1):59-64. doi:10.1159/000346868
  61. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, Nagai S, Kikuchi A, Maeda N, Watanabe H, Okano T, Tano Y. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 2004;351(12):1187-1196. doi:10.1056/NEJMoa040455
  62. Kolli S, Ahmad S, Lako M, Figueiredo F. Successful clinical implementation of corneal epithelial stem cell therapy for treatment of unilateral limbal stem cell deficiency. Stem Cells. 2010;28(3):597-610. doi:10.1002/stem.276
  63. Yang X, Qu L, Wang X, Zhao M, Li W, Hua J, Shi M, Moldovan N, Wang H, Dou Z. Plasticity of epidermal adult stem cells derived from adult goat ear skin. Mol Reprod Dev. 2007;74(3):386-396. doi:10.1002/mrd.20598
  64. Sukhikh G, Petriashvili G, Chentsova E, Arutyunova I, Poltavtseva R, Fomina I. Use of fetal cells of the human cornea for the treatment of various eye pathology. Oftal'mokhirurgiya. 1999;4:2-9. (In Russ.)
  65. Zapuskalov I, Krivosheina O, Elegesheva O. Use of autologous blood mononuclear cells in the complex treatment of corneal ulcers. Vestn Oftalmol. 2008;124(5):32-35. (In Russ.)
  66. Kasparova E, Zaĭtsev A, Kasparova E, Marchenko N. Combination of microdiathermocoagulation and local express autocytokine therapy in treatment of superficial infectious corneal ulcers. Vestnik Oftalmologii. 2012;128(6):50-53. (In Russ.)
  67. Kasparov A, Kasparova E, Pavliuk A. Local express auto-cytokine therapy (a complex of cytokines) in the treatment of viral and nonviral eye lesions. Vestnik Oftalmologii. 2004; 120(1):29-32. (In Russ.)
  68. Fan T-J, Hu X-Z, Zhao J, Niu Y, Zhao W-Z, Yu M-M, Ge Y. Establishment of an untransfected human corneal stromal cell line and its biocompatibility to acellular porcine corneal stroma. Int J Ophthalmol. 2012;5(3):286-292. doi:10.3980/j.issn.2222-3959.2012.03.07
  69. Pinnamaneni N, Funderburgh JL. Concise review: stem cells in the corneal stroma. Stem Cells. 2012;30(6):1059-1063. doi:10.1002/stem.1100
  70. Wu J, Rnjak-Kovacina J, Du Y, Funderburgh ML, Kaplan DL, Funderburgh JL. Corneal stromal bioequivalents secreted on patterned silk substrates. Biomaterials. 2014;35(12):3744-3755. doi:10.1016/j.biomaterials.2013.12.078
  71. Ma X-Y, Bao H-J, Cui L, Zou J. The graft of autologous adipose-derived stem cells in the corneal stromal after mechanic damage. PLoS ONE. 2013;8(10):e76103. doi:10.1371/journal.pone.0076103
  72. Gundorova R, Makarov P, Terskih V, Vasil`ev A, Hodzhabekjan G, Ivanov A, Fedorov D, Shinin V, Kugusheva A. Developing the technique of treatment of corneal defects by transplantation of allogeneic cultured fibroblasts in collagen gel (an experimental study). Rossiyskiy oftal'mologicheskij zhurnal. 2013;6(1):64-68. (In Russ.)
  73. Kasparova E, Subbot A, Kalinina D. Proliferative potential of human corneal endothelium. Vestnik oftalmologii. 2013;129(3):82-88. (In Russ.)
  74. Hara S, Hayashi R, Soma T, Kageyama T, Duncan T, Tsujikawa M, Nishida K. Identification and potential application of human corneal endothelial progenitor cells. Stem Cells Dev. 2014;23(18):2190-2201. doi:10.1089/scd.2013.0387
  75. Zhang K, Pang K, Wu X. Isolation and transplantation of corneal endothelial cell-like cells derived from in-vitro-differentiated human embryonic stem cells. Stem Cells Dev. 2014;23(12):1340-1354. doi:10.1089/scd.2013.0510
  76. Sabater AL, Guarnieri A, Espana EM, Li W, Prósper F, Moreno-Montañés J. Strategies of human corneal endothelial tissue regeneration. Regen Med. 2013;8(2):183-195. doi:10.2217/rme.13.11
  77. Mimura T, Yamagami S, Yokoo S, Usui T, Tanaka K, Hattori S, Irie S, Miyata K, Araie M, Amano S. Cultured human corneal endothelial cell transplantation with a collagen sheet in a rabbit model. Invest Ophthalmol Vis Sci. 2004;45(9):2992-2997. doi:10.1167/iovs.03-1174
  78. Bayyoud T, Thaler S, Hofmann J, Maurus C, Spitzer MS, Bartz-Schmidt K-U, Szurman P, Yoeruek E. Decellularized bovine corneal posterior lamellae as carrier matrix for cultivated human corneal endothelial cells. Curr Eye Res. 2012;37(3):179-186. doi:10.3109/02713683.2011.644382
  79. Teichmann J, Valtink M, Nitschke M, Gramm S, Funk RHW, Engelmann K, Werner C. Tissue engineering of the corneal endothelium: a review of carrier materials. J Funct Biomater. 2013;4(4):178-208. doi:10.3390/jfb4040178
  80. Parikumar P, Haraguchi K, Ohbayashi A, Senthilkumar R, Abraham SJK. Successful transplantation of in vitro expanded human cadaver corneal endothelial precursor cells on to a cadaver bovine's eye using a nanocomposite gel sheet. Curr Eye Res. 2013;39(5):522-526. doi:10.3109/02713683.2013.838633
  81. Koizumi N, Okumura N, Kinoshita S. Development of new therapeutic modalities for corneal endothelial disease focused on the proliferation of corneal endothelial cells using animal models. Exp Eye Res. 2012;95(1):60-67. doi:10.1016/j.exer.2011.10.014
  82. Patel SV, Bachman LA, Hann CR, Bahler CK, Fautsch MP. Human corneal endothelial cell transplantation in a human ex vivo model. Invest Ophthalmol Vis Sci. 2009;50(5):2123-2131. doi:10.1167/iovs.08-2653
  83. Mimura T, Yamagami S, Usui T, Ishii Y, Ono K, Yokoo S, Funatsu H, Araie M, Amano S. Long-term outcome of iron-endocytosing cultured corneal endothelial cell transplantation with magnetic attraction. Exp Eye Res. 2005;80(2):149-157. doi:10.1016/j.exer.2004.08.021
  84. Mimura T, Yokoo S, Araie M, Amano S, Yamagami S. Treatment of rabbit bullous keratopathy with precursors derived from cultured human corneal endothelium. Invest Ophthalmol Vis Sci. 2005;46(10):3637-3644. doi:10.1167/iovs.05-0462
  85. Fan T, Ma X, Zhao J, Wen Q, Hu X, Yu H, Shi W. Transplantation of tissue-engineered human corneal endothelium in cat models. Mol Vis. 2013;19:400-407. Available at: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3580986/.
  86. Shao C, Chen J, Chen P, Zhu M, Yao Q, Gu P, Fu Y, Fan X. Targeted transplantation of human umbilical cord blood endothelial progenitor cells with immunomagnetic nanoparticles to repair corneal endothelium defect. Stem Cells Dev. 2015;24(6):756-767. doi:10.1089/scd.2014.0255
  87. Shao C, Chen J, Chen P, Zhu M, Yao Q, Gu P, Fu Y, Fan X. Targeted transplantation of human umbilical cord blood endothelial progenitor cells with immunomagnetic nanoparticles to repair corneal endothelium defect. Stem Cells Dev. 2015;24(6):756-767. doi:10.1089/scd.2014.0255
  88. Koizumi N, Okumura N, Ueno M, Kinoshita S. New therapeutic modality for corneal endothelial disease using rho-associated kinase inhibitor eye drops. Cornea. 2014;33 Suppl 11:S25-S31. doi:10.1097/ICO.0000000000000240
  89. Okumura N, Kinoshita S, Koizumi N. Cell-based approach for treatment of corneal endothelial dysfunction. Cornea. 2014;33 Suppl 11:S37-S41. doi:10.1097/ICO.0000000000000229
  90. Kasparov A, Kasparova E, Fadeeva L, Subbot A, Borodina N, Kasparova E, Kobzova M, Musaeva G, Pavliuk A. Personalized cell therapy for early postoperative bullous keratopathy (experimental proof and clinical results). Vestnik Oftalmologii. 2013;129(5):53-61. (In Russ.)
  91. Kasparova E, Borodina N, Subbot A. Vital confocal microscopy in evaluation of efficacy of personalized cell therapy in management of early postoperative bullous keratopathy. Vestn Oftalmol. 2012; (1):26-33. (In Russ.)
  92. Kasparova E, Subbot A, Antohin A, Pavlyuk A. Clinical efficacy of personalized cell therapy for corneal endothelial diseases. Kataraktal'naya i refraktsionnaya khirurgiya. 2011;11(2):45-49. (In Russ.)
  93. Gundorova R, Sukhikh G, Petriashvili G, Chentsova E, Arutyunova I, Poltavtseva R, Fomina I. Clinical experience with allotransplantation of fetal corneal cells in ophthalmology. Glaz. 2000;3:10-12. (In Russ.)
  94. Gibbons MC, Foley MA, Cardinal KO. Thinking inside the box: keeping tissue-engineered constructs in vitro for use as preclinical models. Tissue Eng Part B Rev. 2013;19(1):14-30. doi:10.1089/ten.TEB.2012.0305
  95. Malyugin B, Borzenok S, Kolokoltsova T, Komakh Y, Zheltonozhko A, Popov I, Saburina I, Repin V, Kosheleva N, Zurina I, Davydova L, Bogush V, Agapov I. Development of bioengineering design of artificial cornea based on tissue matrix made of spidroin and cultivated cells of eye limbus zone. Oftal'mokhirurgiya. 2013;4:89-97. (In Russ.)
  96. McBrien NA, Jobling AI, Gentle A. Biomechanics of the sclera in myopia: extracellular and cellular factors. Optom Vis Sci. 2009;86(1):E23-E30. doi:10.1097/OPX.0b013e3181940669
  97. Li H-H, Huo L-J, Gao Z-Y, Zhao F, Zeng J-W. Regulation of scleral fibroblast differentiation by bone morphogenetic protein-2. Int J Ophthalmol. 2014 ;7(1):152-156. doi:10.3980/j.issn.2222-3959.2014.01.28
  98. Xue A, Bao F, Zheng L, Wang Q, Cheng L, Qu J. Posterior scleral reinforcement on progressive high myopic young patients. Optom Vis Sci. 2014;91(4):412-418. doi:10.1097/OPX.0000000000000201
  99. Pavlyuk A, Avetisov S, Baranov P, Fedorov A, Trufanov S, Subbot A, Nikolaenko D. Cell therapy with the use of MNC activated TLR-3 ligand polyA:U leads to regeneration of the experimental surgical defects in sclera. Rossiyskiy immunologicheskiy zhurnal. 2008;2(11(2-3)):114-115. (In Russ.)
  100. Zhao F, Wu J, Xue A, Su Y, Wang X, Lu X, Zhou Z, Qu J, Zhou X. Exome sequencing reveals CCDC111 mutation associated with high myopia. Hum Genet. 2013;132(8):913-921. doi:10.1007/s00439-013-1303-6
  101. He L, Frost MR, Siegwart JT, Norton TT. Gene expression signatures in tree shrew choroid during lens-induced myopia and recovery. Exp Eye Res. 2014;123:56-71. doi:10.1016/j.exer.2014.04.005
  102. Hsi E, Chen K-C, Chang W-S, Yu M-L, Liang C-L, Juo S-HH. A functional polymorphism at the FGF10 gene is associated with extreme myopia. Inv Ophthalmol Vis Sci. 2013;54(5):3265-3271. doi:10.1167/iovs.13-11814
  103. Tsai C-L, Wu P-C, Fini ME, Shi S. Identification of multipotent stem/progenitor cells in murine sclera. Invest Ophthalmol Vis Sci. 2011;52(8):5481-5487. doi:10.1167/iovs.11-7676
  104. Maksimov V, Lagar'kova M, Kiselev S. Gene and cell therapy of retinal diseases. Kletochnaya transplantologiya i tkanevaya inzheneriya. 2012;7(3):12-20. (In Russ.)
  105. Yip HK. Retinal stem cells and regeneration of vision system. Anat Rec (Hoboken). 2014;297(1):137-160. doi:10.1002/ar.22800
  106. Lu B, Malcuit C, Wang S, Girman S, Francis P, Lemieux L, Lanza R, Lund R. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration. Stem Cells. 2009;27(9):2126-2135. doi:10.1002/stem.149
  107. Okamoto S, Takahashi M. Induction of retinal pigment epithelial cells from monkey iPS cells. Invest Ophthalmol Vis Sci. 2011;52(12):8785-8790. doi:10.1167/iovs.11-8129
  108. Osakada F, Jin Z-B, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M. In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci. 2009;122(Pt 17):3169-3179. doi:10.1242/jcs.050393
  109. Tezel TH, Del Priore LV, Berger AS, Kaplan HJ. Adult retinal pigment epithelial transplantation in exudative age-related macular degeneration. Am J Ophthalmol. 2007;143(4):584-595. doi:10.1016/j.ajo.2006.12.007
  110. Lopez R, Gouras P, Kjeldbye H, Sullivan B, Reppucci V, Brittis M, Wapner F, Goluboff E. Transplanted retinal pigment epithelium modifies the retinal degeneration in the RCS rat. Invest Ophthalmol Vis Sci. 1989;30(3):586-588.
  111. Cereda MG, Parolini B, Bellesini E, Pertile G. Surgery for CNV and autologous choroidal RPE patch transplantation: exposing the submacular space. Graefes Arch Clin Exp Ophthalmol. 2010;248(1):37-47. doi:10.1007/s00417-009-1201-8
  112. Binder S. Scaffolds for retinal pigment epithelium (RPE) replacement therapy. Br J Ophthalmol. 2011;95(4):441-442. doi:10.1136/bjo.2009.171926
  113. Gouras P. New Developments in Retinal Cell Transplantation and the Impact of Stem Cells. In: Tsang SH, ed. Stem Cell Biology and Regenerative Medicine in Ophthalmology. Springer New York; 2013:121-138. Available at: http://link.springer.com/chapter/10.1007/978-1-4614-5493-9_8. doi:10.1007/978-1-4614-5493-9_8
  114. Tucker BA, Park I-H, Qi SD, Klassen HJ, Jiang C, Yao J, Redenti S, Daley GQ, Young MJ. Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PLoS ONE. 2011;6(4):e18992. doi:10.1371/journal.pone.0018992
  115. Klassen HJ, Ng TF, Kurimoto Y, Kirov I, Shatos M, Coffey P, Young MJ. Multipotent retinal progenitors express developmental markers, differentiate into retinal neurons, and preserve light-mediated behavior. Invest Ophthalmol Vis Sci. 2004;45(11):4167-4173. doi:10.1167/iovs.04-0511
  116. Aftab U, Jiang C, Tucker B, Kim JY, Klassen H, Miljan E, Sinden J, Young M. Growth kinetics and transplantation of human retinal progenitor cells. Exp Eye Res. 2009;89(3):301-310. doi:10.1016/j.exer.2009.03.025
  117. Bartsch U, Oriyakhel W, Kenna PF, Linke S, Richard G, Petrowitz B, Humphries P, Farrar GJ, Ader M. Retinal cells integrate into the outer nuclear layer and differentiate into mature photoreceptors after subretinal transplantation into adult mice. Exp Eye Res. 2008;86(4):691-700. doi:10.1016/j.exer.2008.01.018
  118. Gouras P, Tanabe T. Survival and integration of neural retinal transplants in rd mice. Graefes Arch Clin Exp Ophthalmol. 2003;241(5):403-409. doi:10.1007/s00417-003-0648-2
  119. Seiler MJ, Aramant RB, Thomas BB, Peng Q, Sadda SR, Keirstead HS. Visual restoration and transplant connectivity in degenerate rats implanted with retinal progenitor sheets. Eur J Neurosci. 2010;31(3):508-520. doi:10.1111/j.1460-9568.2010.07085.x
  120. Yao J, Tucker BA, Zhang X, Checa-Casalengua P, Herrero-Vanrell R, Young MJ. Robust cell integration from co-transplantation of biodegradable MMP2-PLGA microspheres with retinal progenitor cells. Biomaterials. 2011;32(4):1041-1050. doi:10.1016/j.biomaterials.2010.09.063
  121. Baranov P, Regatieri C, Melo G, Clissold H, Young M. Synthetic peptide-acrylate surface for self-renewal of human retinal progenitor cells. Tissue Eng Part C Methods. 2013;19(4):265-270. doi:10.1089/ten.TEC.2012.0217
  122. McGill TJ, Cottam B, Lu B, Wang S, Girman S, Tian C, Huhn SL, Lund RD, Capela A. Transplantation of human central nervous system stem cells - neuroprotection in retinal degeneration. Eur J Neurosci. 2012;35(3):468-477. doi:10.1111/j.1460-9568.2011.07970.x
  123. Chencova E, Kuprashvili I, Zueva M, Capenko I, Saburina I, Repin B, Revishhin A. Effects of xenotransplantation of neural stem progenitor cells isolated from «olfactory epithelium» on the functional activity of the retina after ischemia modeled. Kletochnaya transplantologiya i tkanevaya inzheneriya. 2007; 2(4):47-51. (In Russ.)
  124. Tahchidi H, Gavrilova N, Komova O, Lanevskaja N, Ivanova Z, Saburina I, Sergeev S, Pavlova G, Revishhin A, Orlov O, Bastakov V. The influence of stem and progenitor cells on the functional condition and degenerative processes in the retina of campbell rats. Oftal'mokhirurgiya. 2010;3:33-38. (In Russ.)
  125. Lund RD, Wang S, Lu B, Girman S, Holmes T, Sauvé Y, Messina DJ, Harris IR, Kihm AJ, Harmon AM, Chin F-Y, Gosiewska A, Mistry SK. Cells isolated from umbilical cord tissue rescue photoreceptors and visual functions in a rodent model of retinal disease. Stem Cells. 2007;25(3):602-611. doi:10.1634/stemcells.2006-0308
  126. Siqueira RC, Voltarelli JC, Messias AMV, Jorge R. Possible mechanisms of retinal function recovery with the use of cell therapy with bone marrow-derived stem cells. Arq Bras Oftalmol. 2010;73(5):474-479. doi:10.1590/S0004-27492010000500019
  127. Siqueira RC, Messias A, Voltarelli JC, Scott IU, Jorge R. Intravitreal injection of autologous bone marrow-derived mononuclear cells for hereditary retinal dystrophy: a phase I trial. Retina (Philadelphia, Pa). 2011;31(6):1207-1214. doi:10.1097/IAE.0b013e3181f9c242
  128. Zaverucha-do-Valle C, Mesentier-Louro L, Gubert F, Mortari N, Padilha AB, D Paredes B, Mencalha A, Abdelhay E, Teixeira C, G M Ferreira F, Tovar-Moll F, Lopes de Souza SA, Gutfilen B, Mendez-Otero R, F Santiago M. Sustained effect of bone marrow mononuclear cell therapy in axonal regeneration in a model of optic nerve crush. Brain Res. 2014;1587:54-68. doi:10.1016/j.brainres.2014.08.070
  129. Zwart I, Hill AJ, Al-Allaf F, Shah M, Girdlestone J, Sanusi ABR, Mehmet H, Navarrete R, Navarrete C, Jen L-S. Umbilical cord blood mesenchymal stromal cells are neuroprotective and promote regeneration in a rat optic tract model. Exp Neurol. 2009;216(2):439-448. doi:10.1016/j.expneurol.2008.12.028
  130. Pavlyuk A, Mostovoy E, Subbot A, Baranov P. Cell therapy for progressive glaucomatous optic neuropathy using autologous activated by poly A:U peripheral blood leukocytes. Rossiyskiy immunologicheskiy zhurnal. 2008;2(11(2-3)):115-116. (In Russ.)

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.