The site of the Media Sphera Publishers contains materials intended solely for healthcare professionals.
By closing this message, you confirm that you are a certified medical professional or a student of a medical educational institution.

Pigolkin Yu.I.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Kislov M.A.

I.M. Sechenov First Moscow State Medical University (Sechenov University)

Krupin K.N.

I.M. Sechenov First Moscow State Medical University (Sechenov University);
Research-and-development Laboratory of Human Morphology

Mathematical modeling using finite element analysis in forensic medical examination

Authors:

Pigolkin Yu.I., Kislov M.A., Krupin K.N.

More about the authors

Journal: Forensic Medical Expertise. 2023;66(1): 9‑13

Read: 1750 times


To cite this article:

Pigolkin YuI, Kislov MA, Krupin KN. Mathematical modeling using finite element analysis in forensic medical examination. Forensic Medical Expertise. 2023;66(1):9‑13. (In Russ.)
https://doi.org/10.17116/sudmed2023660119

Recommended articles:
Standardized and scalable method for stro­mal-vascular fraction harvesting from adipose tissue. Rege­nerative Biotechnologies, Preventive, Digi­tal and Predictive Medi­cine. 2024;(4):76-81

References:

  1. Zhuming Bi. Finite Element Analysis Applications. Chapter 1 — Overview of Finite Element Analysis. Academic Press. 2018;9780128099520:1-29.  https://doi.org/10.1016/B978-0-12-809952-0.00001-7
  2. Pinchuk PV, Leonov SV, Levandrovskaya IA. Experience of using simulation of spleen injury caused by the action of a group of persons. Sudebno-meditsinskaya ekspertiza. 2022;65(2):34-36. (In Russ.). https://doi.org/10.17116/sudmed20226502134
  3. Leonov SV, Pinchuk PV, Levandrovskaya IA. Spleen trauma modeling by fine element analysis (a case from expert practice). Sudebno-meditsinskaya ekspertiza. 2021;64(3):48-51. (In Russ.). https://doi.org/10.17116/sudmed20216403148
  4. Pinchuk PV, Leonov SV, Levandrovskaya IA. Experience in using finite element analysis for predicting and diagnosing spleen injuries. Voyenno-meditsinskiy zhurnal. 2021;342(7):11-14. (In Russ.). https://doi.org/10.52424/00269050_2021_342_7_11
  5. Kislov MA, Krupin KN. Visualization of morphology by rib destruction when exposed to a stab-cut object. Nauchnaya vizualizatsiya. 2021;13(5):95-104. (In Russ.). https://doi.org/10.26583/sv.13.5.08
  6. Leonov SV, Pinchuk PV, Krupin KN, Panfilov DA. Differential diagnostics of conditions of formation of fracture by method of mathematical modelling. Meditsinskaya ekspertiza i pravo. 2017;1(1):24-28. (In Russ.).
  7. Leonov SV, Pinchuk PV, Krupin KN, Panfilov DA. The mathematical modeling of the injurious impact on the tibial bone for the evaluation of the conditions leading to its fracture. Sudebno-meditsinskaya ekspertiza. 2017;60(2):11-13. (In Russ.). https://doi.org/10.17116/sudmed201760211-13
  8. Kislov MA. Modeling of stab injuries by the method of finite element analysis. Sudebnaya meditsina. 2017;3(3):18-24. (In Russ.). https://doi.org/10.19048/2411-8729-2017-3-3-18-24
  9. Pinchuk PV, Krupin KN, Petrov VV, Leonov SV. Specific fractures of the diaphysis of the femur formed by a traumatic multicomponent bullet shot charge from a smoothbore carbine «Saiga 12k» at a distance in focus, visualization and theoretical study of the fragment formation mechanism about them. Nauchnaya vizualizatsiya. 2018;10(2):15-28. (In Russ.). https://doi.org/10.26583/sv.10.2.02
  10. Panfilov DA, Romanchikov VV, Krupin KN. Solving cross-disciplinary problems by mathematical modelling. IOP Conference Series: Materials Science and Engineering. Tomsk: Institute of Physics Publishing; 2018. https://doi.org/10.1088/1757-899X/327/2/022080
  11. Leonov SV, Vlasjuk IV, Krupin KN. Simulation of the mechanisms of formation of stab and slash wounds by the finite element method. Sudebno-meditsinskaya ekspertiza. 2013;56(6):14-16. (In Russ.).
  12. Zhou Z, Wang T, Jörgens D, Li X. Fiber orientation downsampling compromises the computation of white matter tract-related deformation. J Mech Behav Biomed Mater. 2022;132:105294. https://doi.org/10.1016/j.jmbbm.2022.105294
  13. Li X, Zhou Z, Kleiven S. An anatomically detailed and personalizable head injury model: Significance of brain and white matter tract morphological variability on strain. Biomech Model Mechanobiol. 2021;20(1):403-431.  https://doi.org/10.1007/s10237-020-01391-8
  14. Li Z, Zou D, Zhang J, Ma K, Chen Y. Effects of Loading Conditions on the Pelvic Fracture Biomechanism and Discrimination of Forensic Injury Manners of Impact and Run-Over Using the Finite Element Pelvic Model. Applied Sciences. 2022;12(2):604.  https://doi.org/10.3390/app12020604
  15. Chen Y. Current state and progress of research on forensic biomechanics in China. Forensic Sciences Research. 2021;6(1):1-12.  https://doi.org/10.1080/20961790.2021.1879365
  16. Zhang Y-L, Wang D-S, Yang X-A, Yang T-F, Zhang F, Yu Y-G, Miao Q-F, Li D-R. Mechanism of transverse fracture of the skull base caused by blunt force to the mandible. Legal Medicine. 2022;54(1):101996. https://doi.org/10.1016/j.legalmed.2021.101996
  17. Gumina S, Candela V, Cacciarelli A, Iannuzzi E, Formica G, Lacarbonara W. Three-part humeral head fractures treated with a definite construct of blocked threaded wires: finite element and parametric optimization analysis. JSES International. 2021;5(6):983-991.  https://doi.org/10.1016/j.jseint.2021.06.007
  18. Gagnon C, Godio-Raboutet Y, Piercecchi MD, Thollon L. Modeling one-handed grip strangulation: Intentionality of the gesture and age influence. Legal Medicine. 2021;53(1):101962. https://doi.org/10.1016/j.legalmed.2021.101962
  19. Moura LB, Jürgens PC, Gabrielli MAC, Pereira Filho VA. Dynamic three-dimensional finite element analysis of orbital trauma. British Journal of Oral and Maxillofacial Surgery. 2021;59(8):905-911.  https://doi.org/10.1016/j.bjoms.2020.09.021
  20. Barrett JM, McKinnon CD, Dickerson CR, Callaghan JP. An electromyographically driven cervical spine model in OpenSim. Journal of Applied Biomechanics. 2021;37(5):481-493.  https://doi.org/10.1123/jab.2020-0384
  21. Rzepliński R, Tomaszewski M, Sługocki M, Karczewski K, Krajewski P, Skadorwa T, Małachowski J, Ciszek B. Method of creating 3D models of small caliber cerebral arteries basing on anatomical specimens. Journal of Biomechanics. 2021;125(1):110590. https://doi.org/10.1016/j.jbiomech.2021.110590
  22. Popov VA, Samchuk VV. Methods of three-dimensional and mathematical modeling in forensic medicine (the current issue). Sudebnaya meditsina. 2017;3(3):36-39. (In Russ.). https://doi.org/10.19048/2411-8729-2017-3-3-36-39
  23. Gusarov AA, Makarov IYu, Emelin VV, Fetisov VA. Possibilities and prospects of the use of three-dimensional models in forensic medicine. Meditsinskaya ekspertiza i pravo. 2017;4(1):13-18. (In Russ.).
  24. Pyhalov AA, Zyong VL, Tolstikov VG. Construction and analysis of finite-element models of inhomogeneous deformable solids based on scanning. Vestnik Permskogo natsionalnogo issledovatelskogo politekhnicheskogo universiteta. Mekhanika. 2018;4(1):106-118. (In Russ.). https://doi.org/10.15593/perm.mech/2018.4.10
  25. Goncharov VD, Evdakova EG, Yashkardin RV. Creation of the solid brain model. Izvestiya SPbGETU LETI. 2022;1(1):55-62. (In Russ.).
  26. Shang Sh, Masson C, Llari M, Py M, Ferrand Q, Arnoux P-J, Simms C. The predictive capacity of the MADYMO ellipsoid pedestrian model for pedestrian ground contact kinematics and injury evaluation. Accident Analysis & Prevention. 2021;149(1):105803. https://doi.org/10.1016/j.aap.2020.105803
  27. Sukiasov VG. Analysis the fixation rigidity of the tibia fracture. Vestnik nauki i obrazovaniya Severo-Zapada Rossii. 2021;7(3):53-59. (In Russ.).
  28. Dubrov VE, Shcherbakov IM, Saprykina KA, Kuzkin IA, Zyuzin DA, Yashin DV. Mathematical modeling of the «bone—fixator» system during the treatment of intertrochanteric fractures. Travmatologiya i ortopediya Rossii. 2019;25(1):113-121. (In Russ.). https://doi.org/10.21823/2311-2905-2019-25-1-113-121
  29. Dubrov VE, Zyuzin DA, Kuzkin IA, Shcherbakov IM, Donchenko SV, Saprykina KA. Finite element modelling of biologic system in orthopedic trauma. Russian Journal of Biomechanics. 2019;23(1):140-152. 
  30. Krupin KN. Finite elemental analysis of local osteoporosis formation in the surgical treatment of fubilar fractures. Sudebnaya meditsina. 2020;6(3):58-61. (In Russ.). https://doi.org/10.19048/fm327
  31. Shormanov AM, Ivanov DV, Norkin AI, Ulyanov VYu, Bakhteyeva NKh, Klimov SS, Chibrikova YuA. Computer modeling of biomechanical systems «femoral bone — endoprosthesis/transplant — tibia» in different methods of anterior cruciate ligament plastics in knee joint. Saratovskiy nauchno-meditsinskiy zhurnal. 2017;13(3):764-768. (In Russ.).

Email Confirmation

An email was sent to test@gmail.com with a confirmation link. Follow the link from the letter to complete the registration on the site.

Email Confirmation

We use cооkies to improve the performance of the site. By staying on our site, you agree to the terms of use of cооkies. To view our Privacy and Cookie Policy, please. click here.